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SUMMARY 

 

 We present a new method for computing the impedance matrix (IM) elements in the method 

of moments for geometries described by bilinear quadrilaterals (BQ) and for higher-order basis 

functions. Our method is restricted to the Electric Field Integral Equation and focuses on the self-

elements of the IM and elements for which the observation point is near the integration BQ. The 

method is based on the simple idea of analytical integration along one of the BQ’s parameters 

and numerical integration along the remaining one. For the singular (or nearly so) part of the in-

tegral, we show through analysis and examples that our method can provide precision to 15 sig-

nificant digits. 
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 1  

SECTION 1: INTRODUCTION 

 

 Electromagnetic (EM) modeling and simulation (M&S) is increasingly used in the design 

stage to predict the behavior of electromagnetic systems in diverse and complex environments. 

Typical examples are antenna design, in-situ antenna-to-antenna interaction, radar cross section 

analysis and design, EM interference and vulnerability, and many others. 

 

 The computational electromagnetics (CEM) methods that are used in developing EM M&S 

software tools divide into two broad categories: those that operate in the time domain and those 

in the frequency domain. In the latter case, we can distinguish again two categories: methods that 

approximate the physics of the problem, and methods that do not. In turn, exact-physics methods 

(as the latter category is known) are split into two categories: those that operate in a volume set-

ting and those that operate over surfaces. The latter methods are known as boundary integral 

equation (BIE) methods and the present study falls into this category. The numerical solution of 

the BIE is usually accomplished in CEM using the method of moments (MoM) [1] whereby the 

integral equation is converted into a system of linear equations whose unknowns are related to 

the currents flowing on the surface(s) of the object of interest. 

 

 In MoM, the surface of the object of interest is represented by a number of geometric pan-

els. Currents are defined on each panel and the total current on the object’s surface is expressed 

as a linear combination of the panel currents. Thus, in practice, the actual geometry of an object 

(e.g., aircraft, antenna, terrain) is replaced by a finite number of surface panels: the totality of 

which comes close to the true geometry of the object. To-date, most MoM-based EM M&S 

commercial tools represent the actual geometry by means of flat, triangular panels. The solution 

method employed after the triangular discretization is, usually, that of Rao, Wilton, and Glisson 

[2]. The drawback of using flat, triangular panels is that a few million may be required in faith-

fully reproducing a large and complex geometry. Since the number of unknowns in the resulting 

system of equations is related to the number of triangle edges, this may result in a system with 

millions of unknowns, requiring substantial computer resources and long execution times. It is 

obvious then that use of higher-order panels (panels representable by higher-order polynomials) 

could result in a large reduction in the number of panels that represent the actual geometry. This 

could lead to a substantial reduction in the size of the system of equations. A very well written 

review of efforts in this direction up to 2008 is given by Notaroš [3]. At this time (2015), howev-

er, EM M&S software based on the methods in [3] are still in the research stage with one excep-

tion: software based on representing geometry using bilinear quadrilaterals (BQ) [4], [5]. BQs 

are surfaces in space that are represented in terms of two parameters. The representation is linear 

in each of the parameters but it also contains their product. They are the simplest curved panels 

in use in CEM. 

 

 An important part of the application of MoM to an object comprising a number of BQs is 

the calculation of the matrix elements of the resulting system of linear equations. In the case of 

the electric field integral equation (EFIE) ([1], [2]), the matrix element consists of two iterated 

integrals. The inner integral involves the product of the free-space Green’s function for the 

Helmholtz equation multiplied by an appropriate basis function and integrated over the BQ to 

which the source point belongs. The outer integral involves the result of the first integration, 

multiplied by a test function and integrated over the BQ to which the test function belongs. 
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 It is the inner integral of the EFIE matrix element that we study in this report. The free-

space Green’s function is of the form exp(ikR) / R, where k is the wavenumber while R is the dis-

tance between the source point on the integration BQ and the observation point (OP). Thus, the 

inner integral has an integrable singularity when the OP lies on the integration BQ. In terms of 

numerical integration using finite precision, this singularity manifests itself not only when R is 

equal to zero but, also, when it is close to it. 

 

 There is a considerable amount of literature on the evaluation of this integral [3], [4], [6]. In 

[6], the authors consider quadrilaterals of arbitrary order and present a numerical-integration 

scheme based on Duffy's method [7]. The scheme is valid only if the OP lies on the integration 

QL. They then proceed to compare their method to four other methods: singularity extraction 

([3], [4]), polar-coordinate transformation [8], and quadratic [9] and cubic [10] rectangular trans-

formation. 

 

 All of the methods just mentioned hold for arbitrary degree QL panels. In the present study, 

we focus on a BQ. This allows us to take advantage of the functional form of the distance func-

tion and develop formulas that compute the singular or near-singular part to machine precision. 

In Section 2, we review a BQ's geometry. In Section 3, we present three QLs that we use to test 

our method. In Section 4, we present arguments why some of the present approaches may not 

yield the precision that a specific problem may require. In Section 5, we examine the integral un-

der consideration and we split it into two integrals: one that is proper (not singular) and can be 

evaluated numerically using standard methods, and an improper one that contains an integrable 

singularity. We then show that the latter integral (which represents a Newtonian potential of pol-

ynomial density in the two variables of integration) can be reduced through repeated integrations 

by parts with respect to one of the variables to a double integral over the BQ of a Newtonian po-

tential of density one and a series of single integrals that are not singular and, hence, can be 

computed through standard numerical methods. In Section 6, we deal with the remaining singu-

lar integral as an iterated double integral in the BQ's variables and we show that we can evaluate 

either of the two single integrals analytically. The remaining single integral contains a logarith-

mic singularity, as expected. Through numerical examples using two quite distinct quadratures, 

we show that, as the OP approaches the integration BQ, we keep losing significant digit(s) (SD) 

for the remaining integral. At this point it appears that the present approach does not work as 

well as expected. It is worth mentioning, however, that the precision we obtain does not go be-

low eight SD. 

 

 In Section 7, we revisit the result of Section 6 and, upon close examination; we are able to 

pinpoint the reason for the loss of SD. The logarithm's argument involves the difference of two 

numbers that are almost identical at the origin. This leads to a numerical instability and eventual 

loss of SD. By manipulating the logarithmic argument, we are able to stabilize it and show that 

the last remaining single integral can be evaluated numerically to double precision (DP) (15 SD) 

for the OP not only close but on the BQ itself. In Section 8, we use the third BQ with additional 

OPs on it to provide further evidence of the validity of our approach. In Section 9, we deal most-

ly with irregular BQs (Section 2) and we perform sensitivity studies on our algorithms to deter-

mine how close we can get to an irregular BQ before we start losing precision. 
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 The integration routines we used in our calculations are from Mathematica®
 7 [11]: the 

Gauss-Kronrod Quadrature (GKQ) and the Double-Exponential Quadrature (DEQ), also known 

as the Tanh-Sinh Quadrature (TSQ). We set the maximum number of subdivisions at 12 and 

asked for 15 SD. 
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SECTION 2: GEOMETRY OF A BILINEAR QUADRILATERAL 

 

 In this section, we provide a basic description of a BQ. With respect to a rectangular coordi-

nate system xyz, we define a BQ by 

 

  11 12 21 22

1
( , ) (1 )(1 ) (1 )( 1) ( 1)(1 ) ( 1)( 1) ,

4
p q p q p q p q p q           r r r r r  

 1, 1p q  . (2.1) 

 

The four constant vectors rij denote the four corners of the BQ. We note that (-1, -1) maps to r11, 

(-1, 1) maps to r12, (1, 1) maps to r22 and (1, -1) maps to r21. We show this in Fig. 2.1. 

 

A

B C

D

p

q

1

2 3

4

x

y

r11

r12 r22

r21

 
Figure 2.1. An example of how the basic square in the pq-plane maps to a BQ in the xy-plane 

that occupies the region 3x  , 2y  . The point A maps to 1, the point B to 2, point C to 3 

and point D to 4. 

 

 We collect terms in p, q, and their product in (1.1) to write 

 

 00( , ) , 1, 1p q pqp q p q pq p q     r r r r r  (2.2) 

 

where 

 

  00 11 12 21 22

1

4
   r r r r r  (2.3) 

    11 12 21 22 11 12 21 22

1 1
,

4 4
p q         r r r r r r r r r r  (2.4) 

  11 12 21 22

1

4
pq    r r r r r . (2.5) 
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For the example of Figure 2.1: 00 ˆ ˆ, 3 , 2 ,p q pqx y   r 0 r r r 0 . 

 The function in (2.2) maps points from the square 1 , 1p q   to points in the xyz-space. 

The matrix of this transformation is 

 

 

ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )

p pq p pq p pq

q pq q pq q pq

x y z
x q y q z qp p p

M
x p y p z p

x y z
q q q

  
  

       
 

        
  

  

r r r
r r r r r r

r r r r r r
r r r

 (2.6) 

 

and it must be of rank 2 if we are not to have any singular points. This means that 

 

 
( , ) ( , )p q p q

p q

 
 

 

r r
0  (2.7) 

 

at every non-singular point (p, q). This follows from the fact that the three 2 x 2 sub-matrices 

must have a non-zero determinant. Since the first of these vectors is tangent to a constant q-curve 

while the second to a constant p-curve, condition (2.7) says that the two vectors should not be 

collinear at a point ([12], pp. 56 – 57). What does this mean geometrically? From (2.2) we have 

that 

 

      
( , ) ( , )

p pq q pq p q pq q p

p q p q
q p q p

p q

 
         

 

r r
r r r r r r r r r . (2.8) 

 

If we assume that rp and rq are not collinear (and, hence, their cross product is not zero), then 

they define a plane in space. The vector  q pq pr r  lies on that plane. Then, a necessary condi-

tion for (2.8) to be equal to zero is that the vector rpq does not have a component normal to that 

plane. Differently stated, for (2.8) to become zero, we must have the last three vectors in (2.2) ly-

ing on the same plane. In such a case, (2.2) describes a planar BQ. From this discussion, it is 

clear that the test for determining whether a BQ is planar is that   0pq p q  r r r . It is obvi-

ous from this condition that if rp and rq are collinear, we then have an irregular BQ. We substan-

tiate these statements with mathematics in Appendix A. 

 

 Although (2.8) can be equal to zero only for a planar BQ, the converse is not true, i.e., (2.8) 

is not zero for all planar BQ. We investigate this further. For a planar BQ, we can resolve the last 

vector in (2.2) along the directions of the preceding two vectors 

 

 pq p q  r r r  (2.9) 

 

where  and  are scalars. In place of (2.2), we now have 

 

    00( , ) 1 1 , 1, 1p qp q p q q p p q       r r r r . (2.10) 
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Using this, we get 

 

    
( , ) ( , )

1 1p q p q

p q p q
q q p p

p q
   

 
             

r r
r r r r  

         1 1 1q p p q p qpq q p q p             r r r r r r . (2.11) 

 

If the cross product is zero, then we have a straight line in space. We exclude this case. When is 

the scalar part zero? We let 

 

 ,P p Q q   . (2.12) 

 

From the conditions on p and q in (2.2), we have that 

 

 ,P p Q q       . (2.13) 

 

We also set the scalar factor in (2.11) equal to zero 

 

 1 0Q P   . (2.14) 

 

We want to know whether this equation is satisfied with values of P and Q in the range of (2.13). 

In Figure 2.2, the lower left corner of the rectangle is the point closest to the straight line. The 

value of P there is - || and the value of Q for the straight line is – 1 + ||. For no intersection, we 

want – 1 + || to be smaller than - ||; for one intersection point, we want – 1 + || to be equal to - 

||; and, for an uncountable number of intersection points, we want – 1 + || to be greater than - 

||. We summarize these results in Table 2.1. 

 

P

Q

||||

1 + P + Q = 0

- 1

- 1

||

||

 
 

Figure 2.2. Geometry for the intersection of the straight line with the rectangle. 
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Table 2.1: Solutions of (2.14) subject to (2.13). 

 

1    No intersection points No solution of (2.14) Regular BQ 

1    One intersection point One solution of (2.14) Irregular BQ 

1    Many intersection points Many solutions of (2.14) Irregular BQ 

 

 We demonstrate these results using three BQs. The position vector for the first is 

 

     ( , ) 1 0.2 1 0.3 , 0.2 , 0.3p qp q p q q p       r r r  (2.15) 

 

and its graph is shown in Figure 2.3. This is a regular BQ. The position vector of the second BQ 

is 

 

      ( , ) 1 0.5 1 0.5 , 0.5 , 0.5p qp q p q q p       r r r  (2.16) 

 

and its graph is shown in Figure 2.4. This is an irregular BQ in the form of a triangle. The posi-

tion vector of the third BQ is 

 

      ( , ) 1 2 1 3 , 2 , 3p qp q p q q p       r r r . (2.17) 

 

Its graph is given in Figure 2.5. This is also an irregular BQ. In all three cases,  3,0, 0.5p  r  

while  0,2, 0.5q  r . 

 

 
 

Figure 2.3: Graph of (2.15); a planar, regular BQ. 
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Figure 2.4: The graph of (2.16); a planar, barely irregular BQ. 

 

 
Figure 2.5: The graph of (2.17); a planar, highly irregular BQ.  
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 The unit normal at a point on the surface is given by ([12], p. 62) 

 

 

( , ) ( , )

ˆ
( , ) ( , )

p q p q

p q
n

p q p q

p q

 


 

 


 

r r

r r
 (2.18) 

 

and we note that we could also have defined it as the negative of this. The surface element at a 

point is defined by 

 

 
( , ) ( , )p q p q

dS dpdq
p q

 
 

 

r r
. (2.19) 

 

 If we hold one of the parameters constant, we can measure arc length along the other ac-

cording to the formula ([12], p. 58) 

 

  
2 2

1 1

2 1 1 2

( , )
, 1 1 , const.

p p

p pq p pq

p p

p q
s dp q dp q p p p p q

p


          

 
r

r r r r  

   (2.20) 

Similarly, 

 

  
2

1

2 1 1 2

( , )
, 1 1 , const.

q

q pq

q

p q
s dq p q q q q p

q


        


r

r r  (2.21) 

 

We point out that if we have a curve on the BQ described parametrically by p(t) and q(t), then we 

have a more general formula for its arc length ([12], p. 58). In any case, the above formulas make 

sense since we are moving along straight lines. 

 

 We consider next a point  0 0p q  in the interior of the square of definition of these variables. 

This maps to the point 0r , a point in the interior of the BQ 

 

  0 0 0 00 0 0 0 0 0 0, , 1, 1p q pqp q p q p q p q      r r r r r r . (2.22) 

 

We can reference (2.2) to this point by expanding in a Taylor series about it 

 

         0 0 0 0 0 0 0( , ) p pq q pq pqp q q p p p q q p p q q         r r r r r r r . (2.23) 
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This expression is exact. We can easily show this by collecting terms in powers of p, q, and pq. 

At the point r0, we define coordinates p0q0n. The unit vectors are 

 

 

0 0 0 0 0 0 0 0

0 0 0 0
0 0

0 0 0 0 0 0 0 0

0 0 0 0

( , ) ( , ) ( , ) ( , )

ˆ ˆ ˆ, ,
( , ) ( , ) ( , ) ( , )

p q p q p q p q

p q p q
p q n

p q p q p q p q

p q p q

   


   
  
   


   

r r r r

r r r r
. (2.24) 

 

Although 0p̂  and 0q̂  are perpendicular to n̂ , they are not necessarily perpendicular to each oth-

er. Letting 

 

 
0 0 0 0

0 0
0 0

( , ) ( , )
,

p q p q

p q

 
 

 

r r
p q  (2.25) 

 

we can write for (2.23) 

 

 0 0 0( , ) pqp q u v uv   r r p q r  (2.26) 

 

where 

 

    0 0 0 0 0 0, ; 1 1 , 1 1u p p v q q p u p q v q              . (2.27) 

 

 In the next section, we will describe three BQs that we will use for testing purposes. 
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SECTION 3: TEST BILINEAR QUADRILATERALS  

 

 We will use three BQs for testing our ideas. We describe them below. The corners of the 

first BQ are given by 

 

        11 22 12 213, 2,1 , 3,2, 1 , 3,2,0 , 3, 2,0        r r r r  (3.1) 

 

From (2.3) – (2.5) 

 

        0

1 1
0,0,0 , 6,0, 1 , 0,4, 1 , 0,0,0

2 2
p q pq     r r r r . (3.2) 

 

From (2.2), we then have 

 

    
1 1

( , ) 6,0, 1 0,4, 1 , 1 , 1
2 2

p q p q p q     r . (3.3) 

 

The graph of the BQ is shown in Figure 3.1. This is a flat BQ. The normal is given by (2.18). 

 

 
 

Figure 3.1: The BQ of Equation (3.3). 

 

 The second BQ has corner vectors 

 

         11 22 12 213, 2,1 , 3,2,1 , 3,2, 1 , 3, 2, 1         r r r r  (3.4) 
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from which 

 

        0 0,0,0 , 3,0,0 , 0,2,0 , 0,0,1p q pq   r r r r  (3.5) 

 

so that 

 

      ( , ) 3,0,0 0,2,0 0,0,1 , 1, 1p q p q pq p q    r . (3.6) 

 

The graph of this BQ is shown in Figure 3.2. 

 

 
 

Figure 3.2: The BQ of Equation (3.6). 

 

We go next to an extreme case 

 

        11 22 12 213, 2,10 , 3,2,10 , 3,2, 10 , 3, 2, 10         r r r r  (3.7) 

 

so that 

 

        0 0,0,0 , 3,0,0 , 0,2,0 , 0,0,10p q pq   r r r r  (3.8) 

 

and 

 

      ( , ) 3,0,0 0,2,0 0,0,10 , 1, 1p q p q pq p q    r . (3.9) 

The graph of this BQ is shown in Figure 3.3. 
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 We note that condition (2.7) is satisfied at all points of these QLs. For example, for the last 

BQ we have 

 

        
( , ) ( , )

3,0,0 0,0,10 0,2,0 0,0,10
p q p q

q p
p q

 
            

r r
 

            3,0,0 0,2,0 3,0,0 0,0,10 0,0,10 0,2,0p q       

 ˆ ˆˆ6 30 20z py qx    (3.10) 

 

and the magnitude of this vector is always greater than zero. This means that we have a tangent 

plane at every point of the BQ with a normal given by (2.18). For the example 

 

 

   
2 2

ˆ ˆ ˆ20 30 6
ˆ

20 30 36

qx py z
n

q p

  


 

. (3.11) 

 

 
 

Figure 3.3: The BQ of Equation (3.9). 
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Figure 3.4: Another view of the graph of the BQ of Equation (3.9). 

 

 

  



NAWCADPAX/TR-2015/214 

 

 17  

SECTION 4: REVIEW OF EVALUATION OF AN INTEGRAL 

 

 We justify here the need for a new way to evaluate the integral 

 

 
1 1

1 1

e
, , 0,1,2,...

ikR
l m

lmP p q dpdq l m
R

 

    (4.1) 

 

over a BQ. The function R represents the distance between the integration point (IP) r (on the 

BQ) and another point, rʹ, that we call the OP. This integral is well behaved when the OP is some 

distance away from the BQ; however, when the OP is very near or on the BQ, then the integrand 

has a singularity since the distance function R can become equal to zero or very nearly so. 

Hence, the principal issue with this integral is how to calculate it when the OP is very near or on 

the BQ. Two principal methods exist for evaluating (4.1). One relies on singularity extraction 

and the use of an auxiliary tangent plane ([3], [4]) while the other on coordinate transformation 

([6], [8], [9], [10]). We first discuss the former method. 

  

 Kolundzija and Djordjević ([4], p. 350, 2002) advocate the following splitting of the integral 

so as to isolate its singular part 

 

 
1 1 1 1

0 0 0 0

0 01 1 1 1

e 1 1
, , 0,1,2,...

ikR
l m l m l m

lmP p q p q dpdq p q dpdq l m
R R R

   

 
    

 
     (4.2) 

 

where  0 0,p q  corresponds to a point in the interior of the BQ and is the projection of the OP 

onto the BQ, while R0 is the distance between the OP and the purely linear part of the BQ's posi-

tion vector. The second integral can be evaluated analytically. For the first integral, the authors 

write, “The integrand of the first integral...tends to zero when the source point (IP) approaches 

the field point (OP). Hence, the numerical integration of this integral is much more efficient than 

the numerical evaluation of the complete ... integral”. We will show below that this statement 

does not stand to scrutiny. 

  

 Notaroš ([3], p. 2265) mentions the same splitting of the integral as in (4.2) and, for the first 

integral in (4.2) suggests “using Gauss-Legendre quadrature formulas”. What is most likely 

meant here is that the Gauss-Legendre formulas are to be applied along the p and q coordinates. 

 

 We proceed to examine these statements closely. The worst case scenario is when the OP is 

on the BQ, i.e., the point  0 0,p q . For the position vector to any point on the BQ, we have from 

(2.23) that 

 

          0 0 0 0 0 0 0 0( , ) , ,p pq q pq pqp q q p p p q q p p q q p q          r r r r r r r r r . 

   (4.3) 

 

 

  



NAWCADPAX/TR-2015/214 

 

 18  

We let 

  
 

 
 0 0 0 0

0 0 0 0 0 0

0 0

, ,
, , ,

d p q d p q
p q p q

dp dq
   

r r
p p q q  (4.4) 

 

and we also make the change of variables (2.27) 

 

    0 0 0 0 0 0, ; 1 1 , 1 1u p p v q q p u p q v q              . (4.5) 

 

We can then write for (4.3) 

 

 0 0( , ) pqp q u v uv   r r p q r . (4.6) 

 

The linear part of this 

 

 0 0 0( , )p q u v  r r p q  (4.7) 

 

is a vector to a point on the plane tangent to the BQ at r*. With this notation, we have that 

 

 
0 0,R R     r r r r . (4.8) 

 

 For the first integrand in (4.2), we write 

 

      
 

   

,

0 0 0 0

0

e 1
,

, ,

ikR u v
l m l mf u v u p v q p q

R u v R u v
    . (4.9) 

 

and proceed to evaluate the limit at the origin. We let first u go to zero 

 

    
 

   

0,

0 0 0 0

0

e 1
0,

0, 0,

ikR v
ml l mf v p v q p q

R v R v
   . (4.10) 

 

From (4.7) - (4.8), we get that 

 

    
0

0 0 0 0

0 0

e 1
0,

ik v
ml l mf v p v q p q

v v
  

q

q q
. (4.11) 

 

We proceed to expand the binomial 

 

  
0

0 0 0 0

00 0

e 1
0,

ik v m
l n m n l m

n

m
f v p v q p q

nv v





 
  

 


q

q q
 

 
0 0

0 0 0 0

10 0

e 1 e
ik v ik v m

l m l n m n

n

m
p q p v q

nv v





  
   

 


q q

q q
 (4.12) 

We take now the limit as v goes to zero 
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  
1

0 0
0 0

0
0

lim 0,
l m

l m

v

mp q
f v ikp q




 

q
. (4.13) 

 

where the plus sign corresponds to positive values of v and the minus to negative. We see that 

the imaginary part of the integrand does possess a limit. This is to be expected because the imag-

inary part has no singularity since it is of the form sin(x)/x. The real part, however, does not pos-

sess a limit since the limit value depends on the direction from which the point in question is ap-

proached. 

 

 We next let v be equal to zero in (4.9) 
 

    
 

   

,0

0 0 0 0

0

e 1
,0

,0 ,0

ikR u
l m l mf u u p q p q

R u R u
    

  
 

 

0 0,

0 0 0 0

00 0

e 1

,

ik p q u
l m l mu p q p q

up q u
  

p

pp
 

 
0

0 0 0 0

00 0

e 1
ik u l

m n l n l m

n

l
q u p p q

nu u





 
  

 


p

p p
 

 
 0 0

0

,

0 0
0 0

10 0

e
e 1

ik p q ul m l
ik u m n l n

n

lp q
q u p

nu u





 
      

 


p

p

p p
. (4.14) 

 

We now take the limit as u tends to zero 
 

  
1

0 0
0 0

0
0

lim ,0
l m

l m

u

lp q
f u ikp q




 

p
 (4.15) 

 

with the dual sign as in the previous case. Again, the imaginary part of the integrand has a limit 

while the real part does not. 

 

 We see that, for the real part of the integrand, the two operations produce different limits; 

moreover, within each operation the limit is direction dependent. This means that the limit of the 

real part of the integrand at  0 0,p q  does not exist and, hence, the function is not and cannot be-

come continuous there. In terms of a numerical evaluation of the first integral in (4.2), this means 

that we need a superior cubature in order to produce good results. We also observe that, if l and 

m are equal to zero, then the limit does exist for the real part and is equal to zero. Thus, the claim 

of Kolundzija and Djordjević [4] that the integrand goes to zero at this point is correct only for 

this case. We present additional evidence below, based on numerical calculations. 

 

 In performing numerical demonstrations, we use the three BQs we presented in Section 3. In 

all three cases, we place the singular point at 
 

 0 0 1/ 4p q   (4.16) 

 

so that 
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1 1

, ; 1.25 0.75 , 1.25 0.75
4 4

u p v q u v          . (4.17) 

 

We will deal only with the real part of the integrand since the imaginary does not present a prob-

lem. 

 

   
 

   0,

cos ,1 1 1 1
Re , , 1,2,3

4 4 , 4 ,

l m l m
j

j

j j

kR u v
f u v u v j

R u v R u v

       
         
     

 (4.18) 

 

with the subscript j referring to one of the three BQs. Moreover, from the expansion of the cosine 

about zero, we see that only the leading term is singular, while the rest go to zero with Rj. We 

dispense with those terms and write 

 

  
   0,

1 1 1 1 1
, , 1,2,3

4 4 , 4 ,

l m l m

j

j j

h u v u v j
R u v R u v



     
         
     

. (4.19) 

 

This is the surface we will plot about the origin. 

 

 We begin with the flat BQ of Figure 3.1. The position vector is given by (3.3) and, hence, 

 

              
2 2 2

1

1 1 1 1
ˆ ˆ ˆ, 6,0, 1 0,4, 1 6 4 6 4

2 2 2 2
R u v u v x u y v z u v u v u v             

  (4.20) 

Moreover, 

 

    0,1 1, ,R u v R u v . (4.21) 

 

From (4.19) 

 

  
 

1

1

1 1 1 1
,

4 4 4 ,

l m l m

h u v u v
R u v

      
         

       

. (4.22) 

 

This expression is equal to zero when 0l m  , as it should. In Figs. 4.1 and 4.2, we display the 

cases 1, 0l m   and 0, 1l m  , respectively. In the first case, we observe a signum-like be-

havior near the origin and along the u-axis while, in the second case, this behavior is along the v-

axis. In Figure 4.3, we display the case 1, 1l m   where, as expected the signum-like behavior 

manifests itself along the bisector of the two axes as well as along the axes themselves. All three 

figures support the analysis presented above and the surfaces depicted there are not easy to du-

plicate numerically, even in this simple case of a flat BQ. Admittedly, the singularity can be re-

moved through a rotation of the BQ so that the normal to the BQ points along the z-axis. Once 
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this is done, we can integrate with respect to one of the variables to remove the singularity. This 

can be done only for a flat BQ. 

 

 
 

Figure 4.1: Graph of the surface (4.22) for 1, 0l m  . The surface has a signum-like behavior 

near the origin and along the u-axis. 

 

 
 

Figure 4.2: Graph of the surface (4.22) for 0, 1l m  . The surface has a signum-like behavior 

near the origin and along the v-axis. 
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Figure 4.3: Graph of the surface (4.22) for 1, 1l m  . The signum-like behavior near the origin 

manifests itself along the two axes and along a 45-deg line with respect to the two axes, as it 

should. 

 

 We proceed to check the values in these graphs. For the limits in (4.11) and (4.13), we write 

 

    
1 1

1 1
0 0

0 0

1 1
lim 0, , lim ,0

4 4

l m l m

v u

m l
h v h u

   

 

   
      

   q p
. (4.23) 

 

Using (4.4) and (3.3), we write for these limits 

 

  
1 1

1
0

2 1 1
lim 0, 0.4851

4 417

l m l m

v

m
h v m

   



   
      

   
 (4.24) 

 

and 

 

  
1 1

1
0

2 1 1
lim ,0 0.3288

4 437

l m l m

u

l
h u l

   



   
      

   
. (4.25) 

 

For the case 1, 0l m  , we see from (4.22) that (4.24) is satisfied. Moreover, from (4.22) and 

(4.20) 

 

  
 

1

1

1 1 1 2
,0

4 4 ,0 37

u
h u u

R u u

    
       

    
 (4.26) 
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which is in agreement with (4.25).We display the graph of this function in Figure 4.4. 

 

 
 

Figure 4.4: Graph of the function  1 ,0h u , as defined in (4.22), for 1, 0l m  . 

 

 Similar comments can be made about the cases 0, 1l m  . In the case 1, 1l m  , we get 

results as for the other two cases but we have one more, interesting result along the bisector. Let-

ting v = u in (4.22), we get 

 

  1

1 1
, , 0

214

u
h u u u u

u

 
    

 
. (4.27) 

 

We show the graph of this in Figure 4.5. This discontinuity is at least as nasty as the previous 

ones. We encounter the same behavior along u for 2, 0l m   and along v for 0, 2l m  . 

 

 
 

Figure 4.5: Graph of  1 ,h u u  for 1, 1l m  . 
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 So as not to crowd this section, we analyze the other two BQs of Section 3 in Appendix B. 

From the results there and the present analysis, we conclude that, when the OP is near or on the 

integration BQ, the singularity extraction technique is not sufficient if the first integral in (4.2) is 

to be computed in pq- or uv-coordinates. The one and only exception is when both l and m are 

equal to zero. 

  

 We next discuss the second method, that of a coordinate transformation. For simplicity, we 

concentrate on the transformation to polar coordinates ([3], [8]). If the OP lies on the integration 

BQ, this approach works very well. When, however, the OP is removed from the BQ, it becomes 

ineffective. In order to demonstrate our point, we use the second BQ of Section 3 and the point 

of (4.16). Using this point, we erect the normal along which we designate a distance h from the 

BQ. This is where the OP is located. We also introduce polar coordinates 

 

 cos , sin ; 0 , 0 2u v            (4.28) 

 

with u and v defined in (4.5). In Figs. 4.6.1 – 4.6.4, we plot the ratio  / R where R is the distance 

between the OP and the source (integration) point on the BQ. From these graphs, we see that the 

integrand is not very smooth near the origin. By switching to polar coordinates, we remove the 

(near-) singularity at the origin but we are still left with a function that is not easy to integrate to 

high accuracy. 

 

 To better grasp the behavior near the origin, we have also taken cuts along u = 0 and v = 0. 

We exhibit these graphs in Figs. 4.7.1 – 4.7.5. From the first four graphs, we see that, for h dif-

ferent from zero, we have continuity at the origin and the value there is zero. When h = 0, how-

ever, the limit at the origin does not exist, as we see from Figure 4.7.5. We see also that, the larg-

er the h is (in absolute value), the more we have to worry about the accuracy of the result. As h 

gets small, the gap between the two sides of the curve diminishes dramatically, making the nu-

merical evaluation easier. All in all, we conclude from this brief discussion that, even when we 

use polar coordinates, we have to be careful how we develop numerical integration algorithms. 

We note that an analytical evaluation cannot be performed on either the radial or the angular in-

tegral. 
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Figure 4.6.1. Graph of the integrand  / R for h = 0.001 about the origin for the 

second BQ of Section 3. The origin is the point (4.16). To better illustrate its 

properties, we show the graph in an upside-down position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.2. Graph of the integrand  / R for h = 10
-6

 about the origin for the sec-

ond BQ of Section 3. The origin is the point (4.16). If we turn this graph upside 

down, we get a figure that resembles Fig. 4.6.1. Conversely, if we turn Fig. 4.6.1 

upside down, we get a figure that resembles the present one. 
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Figure 4.6.3. Graph of the integrand  / R for h = 10
-12

 about the origin for the 

second BQ of Section 3. The origin is the point (4.16). 

 

 
 

Figure 4.6.4. Graph of the integrand  / R for h = 0.0 about the origin for the sec-

ond BQ of Section 3. The origin is the point (4.16). 
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Figure 4.7.1. Graph of the integrand  / R for h = 0.1 along v = 0 (left) and u = 0 (right) for the 

second BQ of Section 3. The origin is the point (4.16). 

 

 
Figure 4.7.2. Graph of the integrand  / R for h = 0.1 along v = 0 (left) and u = 0 (right) for the 

second BQ of Section 3. The origin is the point (4.16). 

 

 
Figure 4.7.3. Graph of the integrand  / R for h = 10

-6
 along v = 0 (left) and u = 0 (right) for the 

second BQ of Section 3. The origin is the point (4.16). 
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Figure 4.7.4. Graph of the integrand  / R for h = 10

-12
 along v = 0 (left) and u = 0 (right) for the 

second BQ of Section 3. The origin is the point (4.16). 

 

 

 
Figure 4.7.5. Graph of the integrand  / R for h = 0.0 along v = 0 (left) and u = 0 (right) for the 

second BQ of Section 3. The origin is the point (4.16). 

 

 The next question we may ask is: what if we use polar coordinates and the tangent-plane ap-

proximation? We employ (4.8) and compute the integrand     01/ 1/R R  . We display the 

graph of this function in Figs. 4.8.1 – 4.8.5. We see that the graphs have no singularities and that 

they are relatively smooth; in fact, it appears that the smaller the h, the smoother the graph. Since 

the integral of 1 / R0 can be evaluated analytically, this approach may lead to good accuracies in 

computing (4.1). In the following sections, we propose an approach in rectangular coordinates 

that makes the use of the auxiliary tangent plane unnecessary. 
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Figure 4.8.1. The integrand     01/ 1/R R   for the second BQ of Section 3 

and for h = 0.1. The origin is the point (4.16). 

 

 
Figure 4.8.2. The integrand     01/ 1/R R   for the second BQ of Section 3 

and for h = 0.001. The origin is the point (4.16). 
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Figure 4.8.3. The integrand     01/ 1/R R   for the second BQ of Section 3 

and for h = 10
-6

. The origin is the point (4.16). 

 

 
 

Figure 4.8.4. The integrand     01/ 1/R R   for the second BQ of Section 3 

and for h = 10
-12

. The origin is the point (4.16). 
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Figure 4.8.5. The integrand     01/ 1/R R   for the second BQ of Section 3 

and for h = 0.0. The origin is the point (4.16). 
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SECTION 5: EXAMINATION OF ORIGINAL INTEGRAL 

 

 In this section we take a closer look at the integral in (4.1). We show that we can split the in-

tegral into two parts: one with an analytical integrand and one with an integrable singularity. For 

the latter, we show that we can employ integration by parts to perform analytically the integra-

tion with respect to one of its variables, leaving an integral with respect to the other variable 

whose integrand contains at worst a logarithmic singularity. In subsequent sections, we will 

show that the remaining integral is computable to machine precision. We begin by re-writing 

(4.1) in the form 

 

 
   1 1 1 1

1 1 1 1

cos sin
, , 0,1,2,...l m l m

lm

kR kR
P p q dpdq ik p q dpdq l m

R kR
   

       (5.1) 

 

Since the function sin(x)/x can be computed to all available precision for any value of x, no mat-

ter how small, the integral of the imaginary part can be computed using established quadratures. 

Most of the contribution will come from the neighborhood of R = 0. We dispense then with the 

imaginary part of (5.1) and concentrate on the real part 

 

 
 1 1

1 1

cos
Re , , 0,1,2,...l m

lm

kR
P p q dpdq l m

R
 

    (5.2) 

 

The integrand has an integrable singularity when R is equal to zero or, for finite-precision arith-

metic, in a neighborhood of it. Just as in Section 4, we assume that the OP is an interior point (p0, 

q0) of the BQ and employ the notation of (4.3) through (4.8). As we shall show below, the point 

can be anywhere on the BQ, including the BQ’s boundary. 

  

 We proceed to work on (5.2) and write 

 

 
 1 1 1 1

1 1 1 1

cos 1
Re

l m
l m

lm

kR p q
P p q dpdq dpdq

R R
   


      

  
 21 1 1 1

1 1 1 1

sin / 2
2

l m
l m

kR p q
p q dpdq dpdq

R R
   

       

   
 

21 1 1 1

1 1 1 1

sin / 2

2 / 2

l m
l m

kRk p q
p q kR dpdq dpdq

kR R
   

 
   

 
     (5.3) 

 

and substitute the result in (5.1) 

 

 
   

21 1 1 1 1 1

1 1 1 1 1 1

sin / 2 sin

2 / 2

l m
l m l m

lm

kR kRk p q
P p q kR dpdq dpdq ik p q dpdq

kR R kR
     

 
    

 
       

   
 

 
21 1 1 1 1 1

1 1 1 1 1 1

sin / 2 cos / 2 sin / 2

/ 2 2 / 2

l m
l m l m

kR kR kRk p q
ik p q dpdq p q kR dpdq dpdq

kR kR R
     

 
   

 
       
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 

   
1 1 1 1

1 1 1 1

sin / 2
cos / 2 sin / 2

/ 2

l m
l m

kR p q
ik p q kR i kR dpdq dpdq

kR R
   

 
      

 
     (5.4) 

 

or 
 

 
 1 1 1 1

/2

1 1 1 1

sin / 2
e , , 0,1,2,...

/ 2

l m
l m ikR

lm

kR p q
P ik p q dpdq dpdq l m

kR R
   

 
   

 
    . (5.5) 

 

 The first of these integrals has no singularity and can be evaluated numerically using stand-

ard methods. We note that the since function emphasizes the values of the integrand about R = 0 

and de-emphasizes those away from it; moreover, the frequency has been cut in half, resulting in 

a less oscillatory integrand. 

 

 To work on the last integral, we need the expression for the distance function. We will as-

sume that the OP projects to a point  0 0,p q  of the BQ. From (2.23), the position vector to a 

point  0 0,p q  of BQ is 

 

         0 0 0 0 0 0 0( , ) p pq q pq pqp q q p p p q q p p q q         r r r r r r r . (5.6) 

 

Using (2.25), we can write this in the form 
 

         0 0 0 0 0 0 0, pqp q p p q q p p q q       r r p q r . (5.7) 

 

This is the IP on the BQ. The vectors p0 and q0 define a plane tangent to the BQ at the origin. We 

define the OP by 
 

 
0 0

0 0

0 0

ˆh nh


    


p q
r r r

p q
. (5.8) 

 

With (2.27), we can then write for the distance function, 
 

    
22 2 2 2 2

0 0 0 0
ˆ, 2 2pq pqR u v r r u v uv u v uv nh h               r r r r p q r p q r  

      
22 2 2

0 0 0 0 0 0
ˆ2 2pq pq pqu v uv u v uv u v uv nh h          p q r p q r p q r .(5.9) 

 

 We return to the last integral in (5.5) and write for it 
 

  
1 1

0 0

1 1

, , , , , 0,1,2,...
l mp q

I p q l m dpdq l m
R

 

    (5.10) 

 

With the transformation (2.27), we get integrals of the form 

 

  
  

0 0

0 0

1 1

0 0

1 1

, , , , , 0,1,2,...

q p l m

q p

u v
I p q l m dudv l m

R

 

   

    (5.11) 
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We show below how this double integral can be reduced to a single integral. 

 

Case 1: l = m = 0. 

 

  
  

0 0

0 0

1 1

0 0

1 1

, ,0,0

q p

q p

dudv
I p q I

R

 

   

    . (5.12) 

 

The distance function, given by (5.9), can be considered as a second degree polynomial in u or in 

v. As such, one of the two integrals can be evaluated analytically ([13], p. 81, Formula 2.261). 

The resulting expression involves the logarithm of a complicated function of the remaining vari-

able. This function goes to infinity when the remaining variable is zero and as h tends to zero. 

We shall study this integral in detail in subsequent sections. As an example, we consider the dis-

tance as a function of u. From (5.9), we write 

 

          2 2, , , , 0R u v C v u B v h u A v h C v     (5.13) 

 

where 

 

        
2 2 2

0 0 0 0
ˆ, , , 2 ,pq pq pqA v h v h B v h v n h v C v v         

 
q q p r r p r . (5.14) 

 

If we integrate (5.12) with respect to u, we get 

 

 
        

            

0

0

1 2

0 0

2

0 01

2 1 , 2 1 ,
ln

2 1 , 2 1 ,

q

q

C v R p v C v p B v h dv
I

C vC v R p v C v p B v h



 

   


     . (5.15) 

 

We can easily verify that the denominator of the logarithmic argument becomes zero at v = 0 and 

h = 0. The numerator becomes zero when 0 1p   and v and h are both zero. 

 

Case 2: l = 0, m = 1. 

 

  
  

0 0

0 0

1 1

0 0

1 1

, ,0,1

q p

q p

du
I p q vdv

R

 

   

    (5.16) 

 

In this case, we proceed as in Case 1 to get the same expression as in (5.15) but with the inte-

grand multiplied by v. The limit for the integrand as v tends to zero and h = 0 now exists and is 

zero. Thus, in the numerical evaluation of the outer integral in (5.16), all we need do is to define 

the value of the integrand at zero to be zero. If l = 0 and m = 1, then we consider the integral with 

respect to v as the inner integral and proceed as above. 
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Case 3: 1,l m l  . 

 

 The integral is 

 

  
       

0 0

0 0

1 1

0 0
2 2

1 1

, , ,
, ,

q p l
m

q p

u
I p q l m dvv du

C v u B v h u A v h

 

   


 

   

 
 

   

       

0 0

0 0

1 21 1

2 2 2
1 1

2 ,1

2 , ,

lq pm

q p

u C v u B v hv
dv du

C v C v u B v h u A v h

 

   

  


 
   

 
 

         

0 0

0 0

1 1 1

2 2 2
1 1

,1

2 , ,

q pm l

q p

v B v h u
dv du

C v C v u B v h u A v h

  

   


 

  . (5.17) 

 

For the first inner integral on the right-hand side, we can write 

 

  
   

      

   

0

0

0

0

1 21

11

1 0 0 12 2
1

2 ,1
, , ,

2 , ,

lp

u pl

u p

p

u C v u B v h
I p q l du u R u v

C v u B v h u A v h



 

 

 

  
 

 
  

        
 

0

0

1

2 2 2

1

1 , ,

p

l

p

l u C v u B v h u A v h du





 

    . (5.18) 

 

The last integral in this expression can be evaluated using the recursion formulas in Gradshteyn 

and Ryzhik ([13], Section 2.26, p. 81). From ([13], Formula 2.260.1, p. 81), we have that 

 

  
     

   

 
 

 

0 0

0

0

0 0

1 13 3
12 3

12 2

1 1

2 3 ,
, ,

2

p pl
u pl l

u p

p p

l B v hu R
u R u v du u R u v du

lC v lC v

 
  

 

   


    

 
   

 
 

 

0

0

1

4

2

1

3 ,
,

p

l

p

l A v h
u R u v du

lC v





 


  . (5.19) 

 

If we use this formula repeatedly, we end up with a number of rational functions of v, with no 

poles in the interval of integration, and an integral of the distance function multiplied by a ra-

tional function of v. From ([13], Formula 2.262.1, p. 82), we have that 

 

 
 

   

 
   

     

    

0 0

0

0

0 0

21 12 2

1

12 2

1 1

2 , 4 , ,
, ,

4 8 ,

p p

u p

u p

p p

C v u B v h A v h C v B v h du
R u v du R u v

C v C v R u v

 

 

 

   

   
     

  (5.20) 

 

We will show how to compute the last integral in the next section. 
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 For the inner integral of the second integral on the right-hand side of (5.16), we see that we 

have an integrand of exactly the same form as the integral we started with, except that the power 

of u has been reduced by one. We can then apply the same rule to this integral. 

 

 If m > 1 and l ≥ m, then we consider the integral with respect to v as the inner integral and 

proceed as above. In conclusion, we see that the integral we must study is the integral I(p0, q0, 

0,0) in (5.12). We proceed to do that in the next section. 
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SECTION 6: EVALUATION OF THE INTEGRAL OF 1/R IN  

RECTANGULAR COORDINATES 

 

 As we demonstrated in the last section, the integral in (5.11) can be reduced to a number of 

well-behaved single integrals and an integral of the form 

 

 
 

0 0

0 0

1 1

1 1
,

q p

q p

du
I dv

R u v

 

   

   . (6.1) 

 

We have omitted from the integrand a function of v that is at least continuous since its presence 

or absence does not affect our argument. We examine here how well we can compute this inte-

gral. From (5.7) and (5.8), we have that 

 

   0 0
0 0 0 0 0

0 0

ˆ, , ,pqR u v u v uv h nh


          


p q
r r r r p q r r r r

p q
. (6.2) 

 

The definitions of the various symbols are as in (2.23) and the equations following it. The IP is r 

while the OP is r´. The OP is near the BQ and projects to a point of the BQ that corresponds to 

the point (p0, q0). This point is the new origin of rectangular coordinates (u, v). 

  

  We consider now the inner integral 

 

 
 

0

0

1

1
,

p

u

p

du
I

R u v



 

   (6.3) 

 

For the distance function, we write 

 

      
22 2 2 22 2

0 0 0 0
ˆ, 2 2 2pq pq pqR u v u v u v uv uv nhuv h             r r r r p q p q r r r  

    
22 2 22 2 2

0 0 0 0 0 0
ˆ2 2 pq pqu uv v u v nh uv uv h         p p q q p q r r  

    
22 22 2 2 2

0 0 0 0 0 0
ˆ2 2pq pq pqv v u v nh vu v h            p p r r p q q r q  

  
2 22 2 2

0 0 0 0
ˆ2pq pq pqv u v n h vu v h         

 
p r q p r r q  (6.4) 

 

or 

 

    
2 22 2 2

0 0 0 0
ˆ, 2pq pq pqR u v v u v n h vu v h         

 
p r q p r r q . (6.5) 

 

We let 

 

        
2 2 2

0 0 0 0
ˆ, , , 2 ,pq pq pqA v h v h B v h v n h v C v v         

 
q q p r r p r . (6.6) 
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We assume that C is different from zero and apply the Euler transformation ([13], p. 80) 

 

 2 2R C u Bu A t Cu     . (6.7) 

 

We square both sides and solve for u 

 

 

2

2

t A
u

B Ct





. (6.8) 

 

From this 

 

 
   

   

2 2

2 2

2 2 2
2

2 2

t B Ct C t A Ct Bt CA
du dt dt

B Ct B Ct

    
 

 
 (6.9) 

 

and 

 

 
   

2 2

2 2 2

1 2 2
2

22 2

2

du Ct Bt CA Ct Bt CA dt
dt dt

t AR t Cu B CtB Ct B Ct
t C

B Ct

   
  

  




. (6.10) 

 

Applying the transformation to (6.3), we get that 

 

 

     

     

     

     

22
0 0 0

22
0 0 0

22
0 0 0

22
0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

2 1
ln 2

2

C p B p A C p

C p B p A C p

u
C p B p A C p

C p B p A C p

dt
I Ct B

B Ct C

     

     

     

     

  
  

 

     

     

22

0 0 0

22

0 0 0

2 1 1 1
1

ln

2 1 1 1

C C p B p A C p B

C C C p B p A C p B

       
  


       
  

. (6.11) 

 

In place of the double integral in (6.1), we now have a single integral with a more complicated 

integrand 

 

 
        

           

0

0

1
0 0

1 0 0

2 1 , 1 ,
ln

2 1 , 1 ,

q

q

C v R p v C v p B v h dv
I

C vC v R p v C v p B v h



 

     


      
  (6.12) 

 

where A, B, and C are given by (6.6). 

 

 We note that the denominator of the fraction in the algorithm’s argument is equal to zero 

when h and v are both zero. The numerator, however, is a positive number for these values, as we 

will show at the end of this section. We thus have a logarithmic singularity at the origin when h 
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is equal to zero and the integrand goes to infinity at this point. We turn to the second BQ of Sec-

tion 3 and use it to test how well Mathematica’s numerical subroutines can handle the integral in 

(6.12). The value of p0 and q0 is as in (4.16). From (B.2), and omitting the constant vector, we 

find that the IP is 

 

  
1 1

( , ) 3,0, 0,2, 0,0,1
4 4

u v u v uv
   

     
   

r  (6.13) 

 

from which we find that the unit normal at the origin is 

 

 

1 1
3,0, 0,2,

ˆ ˆ ˆ2 3 244 4
ˆ

1 1 589
3,0, 0,2,

4 4

x y z
n

   
         

 
   

   
   

. (6.14) 

 

From (6.6) and (6.13), 

 

 

2

2 265 1 96 1
, , 9

16 4 2 4589

v
A v h B v h C v

   
         

  
. (6.15) 

 

 We substitute these results in the integrand of (6.12). In Figure 6.1, we display the graph of 

the integrand as a function of v over the range of integration, [-1.25, 0.75], for three values of h. 

We see that, as h tends to zero, we do get the logarithmic singularity mentioned above. In terms 

of numerical integration, this tells us that we have a singularity-type behavior at the origin not 

only when h = 0 but also when h is a small, non-zero number. 

 

 
 

Figure 6.1. The integrand of (6.12) for the second BQ (i.e., with (6.15) substituted in it) as a 

function of v over the range of integration. From left to right: 0.1, 0.01, 0.00h  . Though it is 

not clear from this picture, the function is singular at the origin when h = 0. 

 

 We have used two numerical integration routines in Mathematica [11] to compute (6.12) as 

a function of h. The first method is the GKQ ([14], p. 106) while the second method is the DEQ 

[15], ([14], p. 214) which is also known as the TSQ. We exhibit typical results in Table 6.1.1 and 

6.1.2. For each of these methods, Mathematica allows the specification of singular and nearly 

singular points. In the present case, we have one such point. It is the origin when h is equal to ze-

ro or close to it. The designation “with” means that we have specified this point in Mathematica, 
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while the designation “w/out” means that we have not. We set the maximum number of recursive 

subdivisions of the integration interval to 12 (MaxRecursion → 12). We also record the execu-

tion time in CPU sec and the maximum number of SD we were able to get from each method. It 

is clear that specifying the (near) singularity reduces execution time by about an order of magni-

tude. It also provides more SD. We also see that GKQ is faster than the double exponential 

method but the latter provides more SD. Whether the extra SD are worth the time expense de-

pends on the application. Finally, in Figure 6.2, we display the graph of the integral in (6.12) as a 

function of h. Although the integral appears to be an even function of h, it is not. This is because 

the BQ is not flat, the only time this property would hold. Simply put, the distance from n̂h to a 

point on the BQ is not the same as the distance from n̂h  to the same point. From these two ta-

bles, we also note that if single precision (SP) is desired, then these algorithms do provide that. 

 

 A note of caution: the CPU times are given for the purpose of comparison only, as for ex-

ample specifying the singular point vs. not specifying it. The computer on which we ran these 

calculations is a laptop with a first-generation Intel i7 CPU. 

 

Table 6.1.1. The value of the integral in (6.12) for five values of h calculated using 

GKQ with and without specifying the singular point. The execution time is in CPU 

seconds. We also display the maximum number of SD obtainable from each meth-

od. Second BQ. Singular or nearly singular point at (p0 = q0 = 0.25). 

 

h 

GKQ w/out GKQ with 

Value Time SD Value Time SD 

1.00E-01 2.6488500450514 0.437 14 2.6488500450514 0.031 14 

1.00E-04 2.74952 0.109 6 2.74951658706 0.047 12 

1.00E-08 2.7496 0.109 5 2.7496197 0.016 8 

1.00E-12 2.7496 0.141 5 2.7496196 0.015 8 

0.00E+00 2.7496 0.109 5 2.7496196 0.031 8 

 

Table 6.1.2. The value of the integral in (6.12) for five values of h calculated using 

DEQ with and without specifying the singular point. The execution time is in CPU 

seconds. We also display the maximum number of SD obtainable from each meth-

od. Second BQ. Singular or nearly singular point at (p0 = q0 = 0.25). 

 

h 

DEQ w/out DEQ with 

Value Time SD Value Time SD 

1.00E-01 2.6488500450514 0.53 14 2.6488500450514 0.032 14 

1.00E-04 2.7495 5.35 5 2.7495165870543 0.358 14 

1.00E-08 2.7496 5.289 5 2.749619652 1.201 10 

1.00E-12 2.7496 5.351 5 2.74961965 0.031 9 

0.00E+00 2.7496 5.024 5 2.74961965 0.031 9 
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Figure 6.2: Integral in (6.12) as a function of h. 

 

 We turn now to the third BQ of Section 3. From (B.18), we have that 

 

      ( , ) 3,0,2.5 0,2,2.5 0,0,10u v u v uv  r  (6.16) 

 

so that 

 

 

10 10
3,0, 0,2,

ˆ ˆ ˆ20 30 244 4
ˆ

10 10 1876
3,0, 0,2,

4 4

x y z
n

   
         

 
   

   
   

 (6.17) 

 

and 

 

  
22 241 10 96

, 5 10 , 9 10 2.5
4 4 1876

A v h B v h v C v
 

        
 

. (6.18) 

 

We substitute these results in the integrand of (6.12). In Figure 6.3, we display the graph of the 

integrand as a function of v over the range of integration, [-1.25, 0.75], for three values of h. The 

behavior is the same as for the second BQ. We also compute the integral in (6.12) and form Ta-

bles 6.2, tables analogous to Tables 6.1. The conclusions we draw from the new tables are the 

same as those for Tables 6.1. If we need more than SP, a straight-forward numerical evaluation 

of the integral in (6.12) is not sufficient. In the next section, we proceed to re-write this integral 

so as to make it computable to machine (double) precision. 
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Figure 6.3. The integrand of (6.12) for the third BQ (i.e., with (6.18) substituted in it) as a func-

tion of v over the range of integration. From left to right: 0.1, 0.01, 0.00h  . Though it is not 

clear from this picture, the function is singular at the origin when h = 0. 

 

Table 6.2.1. The value of the integral in (6.12) for five values of h calculated using 

GKQ with and without specifying the singular point. The execution time is in CPU 

seconds. We also display the maximum number of SD obtainable from each meth-

od. Third BQ. Singular or nearly singular point at (p0 = q0 = 0.25). 

 

h 

GKQ w/out GKQ with 

Value Time SD Value Time SD 

1.00E-01 1.8704724171441 0.453 14 1.8704724171441 0.016 14 

1.00E-04 1.92438 0.109 6 1.92437645094 0.031 12 

1.00E-08 1.9244 0.125 5 1.9244343 0.031 8 

1.00E-12 1.9244 0.156 5 1.9244343 0.015 8 

0.00E+00 1.9244 0.094 5 1.9244343 0.032 8 

 

Table 6.2.2. The value of the integral in (6.12) for five values of h calculated using 

DEQ with and without specifying the singular point. The execution time is in CPU 

seconds. We also display the maximum number of SD obtainable from each meth-

od. Third BQ. Singular or nearly singular point at (p0 = q0 = 0.25). 

 

h 

DEQ w/out DEQ with 

Value Time SD Value Time SD 

1.00E-01 1.8704724171441 0.655 14 1.8704724171441 0.015 14 

1.00E-04 1.9244 5.445 5 1.92437645094 0.187 13 

1.00E-08 1.9244 5.429 5 1.924434344 0.640 10 

1.00E-12 1.9244 5.507 5 1.92443434 0.062 9 

0.00E+00 1.9244 5.116 5 1.92443434 0.047 9 
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 Before proceeding further, we point out that we can also reverse the order of integration in 

(6.1) and integrate first with respect to v. In this case, we get 

 

                

                  

0

0

2 2
1 0 0 0

2 2
1

0 0 0

2 1 , 1 , 1 ,

ln

2 1 , 1 , 1 ,

p

p

F u F u q E u h q D u h F u q E u h
du

I
F uF u F u q E u h q D u h F u q E u h



 

       
  


       
  

   

  (6.19) 

where 

 

        
2 2 2

0 0 0 0
ˆ, , , 2 ,pq pq pqD u h u h E u h u hn u F u u         

 
p p q r r q r . (6.20) 

 

Using (6.19) is advantageous when the power m in the last integral in (5.3) is smaller than the 

power l. 

 

 Before leaving this section, we remark that the numerator in (6.12) becomes zero only when 

the singular point is an edge point of the BQ. The proof is as follows. Setting the numerator 

equal to zero, we have that 

 

      
22

0 0 01 1 1
2

B
C p B p A C p

C
        . (6.21) 

 

If p0 = 1, an edge point, then we have that 

 

 
2

B
A

C
  . (6.22) 

 

From (6.6), this can be satisfied if, and only if, v = h = 0. 

  

 If p0 <1, then, squaring both sides of (6.21), we get 

 

 

2

2

B
A

C

 
  
 

. (6.23) 

 

From (6.21) we have that 

 

  01 0
2

B
C p

C
   . (6.24) 

 

Substituting (6.23) in this, we get 

 

  01 0A C p    (6.25) 

 

which, by (6.6), becomes 
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  
2 2 2

0 0 01 0pqv h v p    q p r . (6.26) 

 

This expression can never be negative. For it to be zero, both terms must be equal to zero. The 

first term is equal to zero when both v and h are equal to zero; the second, however, is not. The 

second term becomes zero when 

 

 
   

2 22

0 0 0

2

pq pq pq

pq

v
    


p r p r p r

r
. (6.27) 

 

The value of v here is real only when the two vectors are collinear; in this case, 

 

 
 0

2

pq

pq

v


 
p r

r
 (6.28) 

 

which makes the second term in (6.26) equal to zero but not the first. 
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SECTION 7: EVALUATION OF THE INTEGRAL IN (6.12) 

 

 In this section we develop a procedure for evaluating the integral in (6.12) to machine (dou-

ble) precision. 

 

 As we showed at the end of Section 6, the numerator of the logarithmic argument in (6.12) 

is never equal to zero for interior singular points and, hence, it presents no computational diffi-

culties. For this reason, we re-write (6.12) in the form 

 

         
 

0

0

1

0 0

1

ln 2 1 , 1 ,

q

q

dv
I C v R p v C v p B v h

C v



 

        

          
 

0

0

1

0 0 1 2

1

ln 2 1 , 1 ,

q

q

dv
C v R p v C v p B v h I I

C v



 

           (7.1) 

 

where R(u, v) is defined in (6.2). We can evaluate the first integral numerically using either of 

the two methods of Section 6. The term in the square brackets in the second integral may become 

unstable when both v and h are close to zero for, in such a case, it represents the difference of 

two almost identical numbers. In Tables 7.1.1 and 7.1.2, we have computed these terms and their 

difference at v = 0. We note that, as h gets smaller, the value of R approaches that of (1+p0)C(v) 

(which is independent of h) so that their difference is correct to very few digits. This happens not 

only at v = 0 but in an entire neighborhood of the origin. The BQs we used are the second and 

third ones of Section 3 and the BQ point is (0.25, 0.25). 

 

Table 7.1.1. The terms in square brackets in the second integrand of (7.1) for v = 0 and 

for the second BQ. As h tends to zero, the difference between the two terms loses accu-

racy and tends to zero, which is the wrong answer if h is different from zero. 

 

h   01 ,R p v   (1+p0)C(v) Difference 

1.0E-01 3.76432679904389E+00 3.76299830587259E+00 1.32849317129535E-03 

1.0E-04 3.76299830720132E+00 3.76299830587259E+00 1.32872779445847E-09 

1.0E-08 3.76299830587259E+00 3.76299830587259E+00 0.00000000000000E+00 

1.0E-12 3.76299830587259E+00 3.76299830587259E+00 0.00000000000000E+00 

1.0E-16 3.76299830587259E+00 3.76299830587259E+00 0.00000000000000E+00 
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Table 7.1.2. The terms in square brackets in the second integrand of (7.1) for v = 0 and 

for the third BQ. As h tends to zero, the difference between the two terms loses accura-

cy and tends to zero, which is the wrong answer if h is different from zero. 

 

h   01 ,R p v   (1+p0)C(v) Difference 

1.0E-01 4.88243023503665E+00 4.88140604744166E+00 1.02418759498679E-03 

1.0E-04 4.88140604846595E+00 4.88140604744166E+00 1.02429531523285E-09 

1.0E-08 4.88140604744166E+00 4.88140604744166E+00 0.00000000000000E+00 

1.0E-12 4.88140604744166E+00 4.88140604744166E+00 0.00000000000000E+00 

1.0E-16 4.88140604744166E+00 4.88140604744166E+00 0.00000000000000E+00 

 

 We correct for this as follows. We let 

 

            0 0, 2 1 , 1 ,g v h C v R p v p C v B v h       
 (7.2) 

 

From (6.5) 

 

        2 2, , ,R u v C v u B v h u A v h    (7.3) 

 

and, from (6.6), 
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For g we write 
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The denominator of this fraction is never zero for an interior point. In the numerator, the trouble-

some term is multiplied by B. As we can see from (7.4), B is of O(v), as v tends to zero, and 

sends the product of the two terms to zero; in fact, 

 

              2

0 0 00
, 1 , 1 2 , 2

v
B v h R p v p C v A v h C v h


        p  (7.6) 

 

with the contribution coming from the second term. From (7.5) and (7.1), we have that 
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

 
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

    . (7.7) 

 

Going back to (7.1) again, we write 
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 
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

    . (7.8) 

 

 We display results for this expression in Tables 7.2.1 (second BQ) and 7.2.2 (third BQ). For 

both integration methods, we have specified the origin as a singular point. We have also speci-

fied the maximum number of recursions to be 12. Only on one occasion (h = 0.1) do the two 

methods differ and only in the last digit and by one unit. The times quoted are the CPU sec for 

the two integrations in (7.8). We have not been able to find information in Mathematica as to 

what zero time means. In any case, the times are shown here simply for comparing the two inte-

gration methods. If we compare these tables with the right-hand side (the “with” column) of Ta-

bles 6.1 and 6.2, we notice two things. First, that the results of Tables 6.1 agree with the present 

ones to the number of SD specified there. Second, for approximately the same time-expense, we 

get 15 SD with the present approach. 

 

The most interesting part about the tables below is the last line. It clearly indicates that both 

integration routines can handle even the case h = 0 and to 15 SD! As we show in the next sec-

tion, this case can be handled separately and that the results we will get there are in agreement 

with the ones here. 
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Table 7.2.1. The value of the expression in (7.8) for five values of h calculated us-

ing GKQ and DEQ methods and specifying the singular point. The execution time 

is in CPU seconds. We also display the maximum number of SD obtainable from 

each method. Second BQ. Singular or nearly singular point at (p0 = q0 = 0.25). 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 2.64885004505136 0.032 15 2.64885004505135 0.046 15 

1.00E-04 2.74951658705434 0.046 15 2.74951658705434 0.031 15 

1.00E-08 2.74961966479829 0.032 15 2.74961966479829 0.063 15 

1.00E-12 2.74961967510630 0.032 15 2.74961967510630 0.046 15 

1.00E-16 2.74961967510733 0.016 15 2.74961967510733 0 15 

0.00E+00 2.74961967510733 0.031 15 2.74961967510733 0 15 

 

Table 7.2.2. The value of the expression in (7.8) for five values of h calculat-

ed using GKQ and DEQ methods and specifying the singular point. The exe-

cution time is in CPU seconds. We also display the maximum number of SD 

obtainable from each method. Third BQ. Singular or nearly singular point at 

(p0 = q0 = 0.25). 

 

h 

GKQ DEQ 

Value Time SD Value Time SD 

1.00E-01 1.87047241714406 0 15 1.87047241714406 0.032 15 

1.00E-04 1.92437645094211 0.031 15 1.92437645094211 0.032 15 

1.00E-08 1.92443435241883 0.047 15 1.92443435241883 0.048 15 

1.00E-12 1.92443435820941 0.063 15 1.92443435820941 0.032 15 

1.00E-16 1.92443435820999 0.047 15 1.92443435820999 0.016 15 

0.00E+00 1.92443435820999 0.030 15 1.92443435820999 0 15 

 

 The two integrals in (7.8) can be combined into a single one 
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 

         


      
  

  (7.9) 

 

We present results for this integral in Tables 7.3.1 and 7.3.2. The entries in bold red indicate 

times lower than those required by (7.8). From these we conclude that GKQ works faster with 

(7.9) while for DEQ there is not much time difference between (7.8) and (7.9). 
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 From Figs. 6.1 and 6.3, we see that the integrand of (7.9) is not a simple one to evaluate 

numerically; nevertheless, through a simple manipulation, we were able to compute it to machine 

precision (15 SD). 

 

Table 7.3.1. The value of the integral in (7.9) for five values of h calculated using 

GKQ and DEQ methods and specifying the singular point. The execution time is in 

CPU seconds. We also display the maximum number of SD obtainable from each 

method. Second BQ. Singular or nearly singular point at (p0 = q0 = 0.25). 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 2.64885004505136 0.015 15 2.64885004505135 0.031 15 

1.00E-04 2.74951658705434 0.031 15 2.74951658705434 0.015 15 

1.00E-08 2.74961966479829 0.078 15 2.74961966479829 0.062 15 

1.00E-12 2.74961967510630 0.062 15 2.74961967510630 0.032 15 

1.00E-16 2.74961967510733 0.016 15 2.74961967510733 0.015 15 

0.00E+00 2.74961967510733 0.031 15 2.74961967510733 0.016 15 

 

Table 7.3.2. The value of the integral in (7.9) for five values of h calculated using 

GKQ and DEQ methods and specifying the singular point. The execution time is in 

CPU seconds. We also display the maximum number of SD obtainable from each 

method. Third BQ. Singular or nearly singular point at (p0 = q0 = 0.25). 

 

h 

GKQ DEQ 

Value Time SD Value Time SD 

1.00E-01 1.87047241714406 0.015 15 1.87047241714406 0.016 15 

1.00E-04 1.92437645094211 0.015 15 1.92437645094211 0.032 15 

1.00E-08 1.92443435241883 0.031 15 1.92443435241883 0.031 15 

1.00E-12 1.92443435820941 0.016 15 1.92443435820941 0.031 15 

1.00E-16 1.92443435820999 0.016 15 1.92443435820999 0.015 15 

0.00E+00 1.92443435820999 0.016 15 1.92443435820999 0 15 

 

 In the tables above, we notice that the result for h = 0 is the same as for h = 10
-16

. We focus 

on this observation in Tables 7.4. There, we vary h from 10
-13

 to 10
-20

 and we note that, for both 

BQs and both methods, we get the same result as for h = 0 for values of h equal or greater than 

10
-15

. Considering (7.6), and as a precaution, whenever h is specified as zero, we may add some 

more stability to the computation by giving it a small value, such as 10
-20

. 
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Table 7.4.1. The value of the integral in (7.9) for small values of h calculated using 

GKQ and DEQ methods and specifying the singular point. The execution time is in 

CPU seconds. We also display the maximum number of SD obtainable from each 

method. Second BQ. Singular or nearly singular point at (0.25, 0.25). 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-13 2.74961967510723 0.015 15 2.74961967510723 0.016 15 

1.00E-14 2.74961967510732 0.062 15 2.74961967510732 0.016 15 

1.00E-15 2.74961967510733 0.031 15 2.74961967510733 0.015 15 

1.00E-16 2.74961967510733 0.015 15 2.74961967510733 0.016 15 

1.00E-17 2.74961967510733 0.016 15 2.74961967510733 0.015 15 

1.00E-18 2.74961967510733 0.015 15 2.74961967510733 0.000 15 

1.00E-19 2.74961967510733 0.031 15 2.74961967510733 0.000 15 

1.00E-20 2.74961967510733 0.031 15 2.74961967510733 0.000 15 

0.00E+00 2.74961967510733 0.031 15 2.74961967510733 0.000 15 

 

Table 7.4.2. The value of the integral in (7.9) for small values of h calculated using 

GKQ and DEQ methods and specifying the singular point. The execution time is in 

CPU seconds. We also display the maximum number of SD obtainable from each 

method. Third BQ. Singular or nearly singular point at (0.25, 0.25). 

 

h 

GKQ DEQ 

Value Time SD Value Time SD 

1.00E-13 1.92443435820993 0.015 15 1.92443435820993 0.016 15 

1.00E-14 1.92443435820998 0.015 15 1.92443435820998 0.016 15 

1.00E-15 1.92443435820999 0.015 15 1.92443435820999 0.000 15 

1.00E-16 1.92443435820999 0.000 15 1.92443435820999 0.015 15 

1.00E-17 1.92443435820999 0.015 15 1.92443435820999 0.000 15 

1.00E-18 1.92443435820999 0.016 15 1.92443435820999 0.015 15 

1.00E-19 1.92443435820999 0.000 15 1.92443435820999 0.016 15 

1.00E-20 1.92443435820999 0.015 15 1.92443435820999 0.000 15 

0.00E+00 1.92443435820999 0.016 15 1.92443435820999 0.015 15 

 

 In the next section, we present more examples and another way of evaluating (7.9) when  

h = 0. 

 

  



NAWCADPAX/TR-2015/214 

 

 53  

SECTION 8: ADDITIONAL TEST CASES 

 

 In the previous sections, we developed a method for computing the inner integral of the IM 

element of EFIE. We tested the method using the BQs of Section 3 but we employed only one 

point in the parametric representation of each BQ, namely, the point p0 = q0 = 0.25. In this sec-

tion, we expand the testing using the third BQ of Section 3. As we pointed out in that section, 

this extreme type of a BQ should be avoided in practice. It makes, however, for a good test case 

since, if our method can provide good results for this BQ, it will, in all likelihood, provide good 

results for more commonly used BQs, such as the second one in Section 3. 

  

 The first case we consider is the case p0 = q0 = 0. At this point the BQ has a saddle type of 

behavior. From (3.9), the equation for the third BQ is 

 

      ( , ) 3,0,0 0,2,0 0,0,10 , 1, 1p q p q pq p q    r  (8.1) 

 

from which we get that 

 

        
( , ) ( , )

3,0,0 0,0,10 , 0,2,0 0,0,10
p q p q

q p
p q

 
   

 

r r
 (8.2) 

 

and 

 

 
   

   

   

    2 2

3,0,10 0,2,10 3,0,10 0,2,10 ˆ ˆ ˆ20 30 6
ˆ

3,0,10 0,2,10 3,0,10 0,2,10 400 900 36

q p q p qx py z
n

q p q p q p

    
  

   
. (8.3) 

 

 We use this information in the integral under consideration, namely (7.9). We display the 

graph of the integrand for h = 0.1 in Figure 8.1. In Table 8.1, we display the results of the inte-

gration of (7.9) using both GKQ and DEQ, and for the same values of h that we have used in the 

previous sections. The conditions for the two quadratures are the same as before, with the num-

ber of recursions limited to 12. We have also specified the origin as a singular point. We obtain 

agreement to 15 SD, except in the last two cases where there is a disagreement of one unit in the 

last digit. 
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Figure 8.1. The graph of the integrand in (7.9) for the third BQ of Section 3, with 

p0 = q0 = 0 and h = 0.1. As h gets smaller, the peak moves upward. When h = 0, 

we have a logarithmic singularity at the origin. 

 

Table 8.1. The numerical integration of (7.9) for the third BQ of Section 3 and with 

p0 = q0 = 0. Both methods agree except for the numbers in red, which disagree in 

the last digit by one unit. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 2.16084390813449 0.047 15 2.16084390813449 0.047 15 

1.00E-04 2.25593244874981 0.015 15 2.25593244874981 0.047 15 

1.00E-08 2.25603714690303 0.031 15 2.25603714690303 0.031 15 

1.00E-12 2.25603715737396 0.031 15 2.25603715737396 0.031 15 

1.00E-16 2.25603715737501 0.032 14 2.25603715737500 0.015 14 

0.00E+00 2.25603715737501 0.016 14 2.25603715737500 0.016 14 

 

 We next give the singular point the value p0 = -1, q0 = 1. The position vector from (8.1) is (-

3, 2, -10) and corresponds to one of the two lower corners of the BQ. In Figure 8.2, we show the 

graph of the integrand of (7.9) for h = 0.1. The same comments as above hold with the exception 

that the logarithmic singularity is now an endpoint of the integration interval. We have calculated 

the integral in (7.9) and we display the results in Table 8.2. We see that this time the two quadra-

tures differ for large rather than small values of h. Since the difference is only in the last digit 

and only by a unit, we do not think it is a matter to dwell on. 
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Figure 8.2. The graph of the integrand in (7.9) for the third BQ of Section 3, with 

p0 = -1, q0 = 1 and h = 0.1. As h gets smaller, the peak moves upward. When h = 

0, we have a logarithmic singularity at the origin. 

 

Table 8.2. The numerical integration of (7.9) for the third BQ of Section 3 and with 

p0 = -1, q0 = 1. Both methods agree except for the numbers in red, which disagree 

in the last digit by one unit. 

 

h 

GKQ DEQ 

Value Time SD Value Time SD 

1.00E-01 0.421015601245452 0.031 15 0.421015601245452 0.032 15 

1.00E-04 0.422730809605921 0.031 14 0.422730809605920 0.031 14 

1.00E-08 0.422732511450675 0.031 14 0.422732511450674 0.016 14 

1.00E-12 0.422732511620856 0.032 15 0.422732511620856 0.031 15 

1.00E-16 0.422732511620873 0.015 15 0.422732511620873 0.016 15 

0.00E+00 0.422732511620873 0.016 15 0.422732511620873 0.031 15 

 

 We chose the next singular point to be at p0 = q0 = 1. The position vector from (8.1) is (3, 2, 

10) and corresponds to one of the two upper corners of the BQ. In Figure 8.2, we show the graph 

of the integrand of (7.9) for h = 0.1. We have calculated the integral in (7.9) and we display the 

results in Table 8.2. We see that this time the two quadratures differ in all cases but one, but only 

in the last digit and not more than by a unit. From the last three cases, we may conclude that, in 

terms of the Mathematica quadratures, our method provides at least 14 SD. 
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Figure 8.3. The graph of the integrand in (7.9) for the third BQ of Section 3, with 

p0 = q0 = 1 and h = 0.1. As h gets smaller, the peak moves upward. When h = 0, 

we have a logarithmic singularity at the origin. 

 

Table 8.3. The numerical integration of (7.9) for the third BQ of Section 3 and with 

p0 = q0 = 1. The numbers in red indicate a disagreement in the last digit of one unit. 

 

 

h 

GKQ DEQ 

Value Time SD Value Time SD 

1.00E-01 0.422500945889474 0.016 15 0.422500945889474 0.015 15 

1.00E-04 0.422732296117918 0.016 14 0.422732296117917 0.015 14 

1.00E-08 0.422732511599326 0.015 14 0.422732511599325 0.016 14 

1.00E-12 0.422732511620871 0.062 14 0.422732511620870 0.015 14 

1.00E-16 0.422732511620873 0.016 14 0.422732511620872 0.015 14 

0.00E+00 0.422732511620873 0.031 14 0.422732511620872 0 14 

 

 We also repeat the calculations as in Tables 7.4 for the three points of this section. The con-

clusions are the same as in Section 7: giving h a small value when it is supposed to be zero may 

stabilize the algorithm without altering the end result. 

  



NAWCADPAX/TR-2015/214 

 

 57  

Table 8.4.1. The value of the integral in (7.9) for the third BQ and for small values 

of h calculated using GKQ and DEQ methods and specifying the singular point. The 

execution time is in CPU seconds. We also display the maximum number of SD ob-

tainable from each method. Singular or nearly singular point at p0 = 0.0, q0 = 0.0. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-13 2.25603715737490 0.047 15 2.25603715737490 0.016 15 

1.00E-14 2.25603715737500 0.031 14 2.25603715737499 0.016 14 

1.00E-15 2.25603715737501 0.000 14 2.25603715737500 0.016 14 

1.00E-16 2.25603715737501 0.032 14 2.25603715737500 0.031 14 

1.00E-17 2.25603715737501 0.031 14 2.25603715737501 0.016 14 

1.00E-18 2.25603715737501 0.016 14 2.25603715737500 0.015 14 

1.00E-19 2.25603715737501 0.031 14 2.25603715737501 0.015 14 

1.00E-20 2.25603715737501 0.031 14 2.25603715737500 0.016 14 

0.00E+00 2.25603715737501 0.031 14 2.25603715737501 0.016 14 

 

Table 8.4.2. The value of the integral in (7.9) for the third BQ and for small values 

of h calculated using GKQ and DEQ methods and specifying the singular point. The 

execution time is in CPU seconds. We also display the maximum number of SD ob-

tainable from each method. Singular or nearly singular point at p0 = -1.0, q0 = 1.0. 

 

h 

GKQ DEQ 

Value Time SD Value Time SD 

1.00E-13 0.422732511620871 0.015 15 0.422732511620871 0.032 15 

1.00E-14 0.422732511620873 0.016 15 0.422732511620873 0.031 15 

1.00E-15 0.422732511620873 0.032 15 0.422732511620873 0.015 15 

1.00E-16 0.422732511620873 0.016 15 0.422732511620873 0.031 15 

1.00E-17 0.422732511620873 0 15 0.422732511620873 0.032 15 

1.00E-18 0.422732511620873 0.031 15 0.422732511620873 0.015 15 

1.00E-19 0.422732511620873 0.031 15 0.422732511620873 0.016 15 

1.00E-20 0.422732511620873 0.015 15 0.422732511620873 0.000 15 

0.00E+00 0.422732511620873 0.016 15 0.422732511620873 0.031 15 
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Table 8.4.3. The value of the integral in (7.9) for the third BQ and for small values 

of h calculated using GKQ and DEQ methods and specifying the singular point. The 

execution time is in CPU seconds. We also display the maximum number of SD ob-

tainable from each method. Singular or nearly singular point at p0 = 1.0, q0 = 1.0. 

 

h 

GKQ DEQ 

Value Time SD Value Time SD 

1.00E-13 0.422732511620873 0.016 14 0.422732511620872 0.015 14 

1.00E-14 0.422732511620873 0.046 14 0.422732511620872 0.016 14 

1.00E-15 0.422732511620873 0.016 14 0.422732511620872 0.016 14 

1.00E-16 0.422732511620873 0.031 14 0.422732511620872 0.016 14 

1.00E-17 0.422732511620873 0.000 14 0.422732511620872 0.031 14 

1.00E-18 0.422732511620873 0.031 14 0.422732511620872 0.000 14 

1.00E-19 0.422732511620873 0.000 14 0.422732511620872 0.016 14 

1.00E-20 0.422732511620873 0.016 14 0.422732511620872 0.015 14 

0.00E+00 0.422732511620873 0.031 14 0.422732511620872 0.000 14 

 

 We next present another way of computing (7.9) when h is equal to zero. We repeat here 

(7.9) for convenience 

 

                 
              

0

0

1
0 0 0 0

1 0 0

2 1 , 1 , 1 , 1
ln

, 1 , 1 2 ,

q

q

C v R p v C v p B v h R p v p C v dv
I

C vB v h R p v p C v A v h C v



 

         


      


 

  (8.4) 

where, from (7.3), 

 

        2 2, , ,R u v C v u B v h u A v h    (8.5) 

 

while, from (7.4), 

 

        
2 2

0 0 0 0,0 , ,0 2 ,pq pqA v v B v v v C v v     q q p r p r . (8.6) 

 

 We consider the case of an interior singular point. When h = 0, the numerator of the loga-

rithm’s argument does not become zero, nor does it become so at any other value of the integra-

tion variable. For the denominator, we write 

 

               0 0,0 1 , 1 2 ,0g v B v R p v p C v A v C v       
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  
      

      
   

22 2

0 0

0 0

1 , 1
,0 2 ,0

1 , 1

R p v p C v
B v A v C v

R p v p C v

    
  

     

 

                   

      

22 2

0 0 0 0

0 0

,0 1 , 1 2 ,0 1 , 1

1 , 1

B v R p v p C v A v C v R p v p C v

R p v p C v

             


   
  

  (8.7) 

We evaluate 

 

                   
2 2 22 2 2 2

0 0 0 01 , 1 1 ,0 ,0 1R p v p C v p C v B v u A v p C v           

         
2 2

0 0 0 0 0,0 1 ,0 2 1 pqB v p A v p v v v         q p r q  (8.8) 

 

and substitute in (8.7) 

 

 
                

      

2 2

0 0 0 0 0 0

0 0

,0 2 1 2 ,0 1 , 1

1 , 1

pqB v p v v v A v C v R p v p C v
g v

R p v p C v

              


   

q p r q
 

              

      

2 2

0 0 0 0 0 0 0 0 0
2

0 0

2 1 1 , 1
2

1 , 1

pq pqv p v v C v R p v p C v
v

R p v p C v

                


   

q p r q p r q q
 

  (8.9) 

 

We set h = 0 in the argument of the logarithm in (8.4) and write 

 

 
 

 

 

 2
ln ln 2ln

2 2

N v N v
v

v D v D v
   (8.10) 

 

where 

 

                    
2

0 0 0 02 1 , 1 ,0 1 , 1N v C v R p v C v p B v R p v p C v            

  (8.11) 

 

and 

 

       
2

0 0 0 0 0 02 1pq pqD v v p v v        
 

q p r p r q q  

        
2

0 0 01 , 1C v R p v p C v      q . (8.12) 

 

 

We return to (8.4) and write 
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  
 

 

   

 

   
   

0 0 0

0 0 0

1 1 1

1 22

1 1 1

ln1 1
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q q q

q q q
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I dv dv dv I I

C v v D v C v D v C v
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     

       . 

  (8.13) 

We note that the argument of the logarithm in the first integral on the right takes on a finite value 

when v is equal to zero. For the second integral, we have 

 

  
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 

 

 

 

 
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0 0 0 0
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1 1 1 10

2
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q q
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I dv dv dv dv dv
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   

    
     . (8.14) 

 

We integrate the new integrals once by parts 
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 

 
r p r r p r

. (8.15) 

 

The last two integrals have no singularities and are stable for numerical evaluation. If we substi-

tute this result in (8.14), we get 
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r p r r p r

.(8.16) 

 

All the integrals in this expression are numerically stable. 

 

 We examine next the case in which p0 takes on its extreme values. When 0 1p   , we still 

have the denominator of the logarithmic function becoming zero but not the numerator. In this 

case, 

 

            
22 2 2 2

0 0 0 00, , 2, 4 2 ,0 ,0 ; 1h hR v v R v C v B v A v p      q  (8.17) 

 

and 

 

 
 

 

           

   

2

2

0 0 0

2 4 2 ,0 ,0 2 ,0

2 2 pq

C v C v B v A v C v B vN v

v D v v v C v

    
 


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 
q p r q

. (8.19) 
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If we take v away from the denominator, then the rest of the fraction attains a finite value at v = 

0. We can then proceed as above. 

 

 When 0 1p  , we have from the end of Section 6 that the numerator in the logarithm's argu-

ment becomes zero. In this case, we have that 
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q q p r

q p r p r q q q
 

  (8.20) 

 

with same comments as above. The singularity is of the same kind as the one in (8.19). We recall 

that we used the last two values of p0 in the examples above and all cases ran smoothly. 

  

 We return to (8.16) and we compute it for the third BQ and the same points. The results are 

displayed in Table 8.5. The results of the first row are in agreement with those of Table 7.3.2 

(last row). The results of the second row are in agreement with those of Table 8.3.1 (last row) but 

took a lot longer. The results of the third row are in agreement with those of Table 8.3.2 (last 

row). From the CPU time, we see that GKQ struggled to get to the result while the DEQ time is 

the same as in Table 8.3.2. From the last row, we see that both quadratures achieved 15 SD but 

the CPU time they required is much higher than that listed in Table 8.3.3. The conclusion here is 

that we will do as well using (7.9) instead of (8.17). 

 

Table 8.5. The value of (8.17) for the third BQ and for four values of (p0, q0) calcu-

lated using GKQ and DEQ methods and specifying the singular point. The execution 

time is in CPU seconds. We also display the maximum number of SD obtainable 

from each method. 

 

(p0, q0) 

GKQ DEQ 

Value Time SD Value Time SD 

(0.25, 0.25) 1.92443435820999 0.015 15 1.92443435820999 0.016 15 

(0.0, 0.0) 2.25603715737501 0.046 15 2.25603715737500 0.046 15 

(-1.0,1.0) 0.422732511620873 0.110 15 0.422732511620873 0.030 15 

(1.0, 1.0) 0.422732511620873 0.093 15 0.422732511620873 0.048 15 

 

 We conclude this section with a brief explanation as to why some of the times in Table 8.4 

are much higher than the corresponding times in the previous tables. In Figure 8.4, we display 

the integrand of the middle integral in (8.16) for p0 = -1 and q0 = 1. The fact that we are subtract-

ing two almost equal areas may have contributed to the slow convergence of GKQ. The execu-

tion time in this case is 0.094 CPU sec vs. 0.015 for the DEQ. The same is true for the case p0 = 

1 and q0 = 1. We display the corresponding integrand in Figure 8.5. 
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Figure 8.4: Integrand of the middle integral in (8.16) for p0 = -1 and q0 = 1. 

 

 

 
 

Figure 8.5: Integrand of the middle integral in (8.16) for p0 = 1 and q0 = 1. 

  



NAWCADPAX/TR-2015/214 

 

 63  

SECTION 9: PROOF OF CLAIM AND SENSITIVITY ANALYSIS 

 

 In Section 6, we claimed that C in (6.6) is greater than zero. We show below that, if (6.6) is 

equal to zero, we have an irregular BQ. We also give additional examples of irregular BQs and 

perform a sensitivity study to determine how precision is affected as we pass from a regular to an 

irregular BQ. The arguments that we use here can also be used to show that F in (6.20) is also 

greater than zero. From (6.6), we have that 

 

 
0 pqC v p r . (9.1) 

 

 We assume first that pq r 0 . From (2.2), we see that the resulting BQ describes a planar 

parallelogram. For (9.1) to be zero, we must have that 0 p 0 . From (2.23) the position vector to 

the BQ is 

 

         0 0 0 0 0 0 0( , ) p pq q pq pqp q q p p p q q p p q q         r r r r r r r  (9.2) 

 

with r0 defined in (2.22). From (2.25) 

 

 
0 0 0 0

0 0

0 0

( , ) ( , )
,

p q p q

p q

 
 

 

r r
p q  (9.3) 

 

so that, from the last two, 

 

 0 0p pqq p r r . (9.4) 

 

We let now p0 and rpq be zero in (9.2) and we get 

 

  0 0( , ) qp q q q  r r r  (9.5) 

 

which is the equation of a straight line in space. We thus have an irregular BQ. We could have 

surmised that immediately since 0 p 0  implies that (2.7) is zero. 

 We assume next that pq r 0 . For (9.1) to be equal to zero, we must have the two vectors 

there to be collinear. From this and (9.4), we conclude that rpq and rp are collinear. This implies 

that the BQ is planar. We write 

 

 pq pr r . (9.6) 

 

If we compare this expression with (2.9), we conclude that = 0 and Table 2.1 tells us for what 

values of  we will have a regular or irregular, planar BQ. We verify these values by substituting 

(9.6) in (9.1) 
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0 0 1pq p pq pq p pq p p pC v q v q q q           p r r r r r r r r r . (9.7) 

 

For this to be equal to zero, we must have that 

 

 
1

q


  . (9.8) 

 

If 1  , the absolute value of q that makes (9.7) be zero is greater than one. Since 1 1q   , 

then (9.7) is different from zero. If 1  , then 1q   and we can have (9.7) equal to zero. What 

does this imply in terms of the nature of the BQ? If we substitute (9.6) in (9.2), we get 

 

         0 0 0 0 0 0 0( , ) p p q p pp q q p p p q q p p q q           r r r r r r r  

           0 0 0 0 0 0 0 01p qq p p p q q p p q q q q              r r r . (9.9) 

 

From this, we see that we have a surface on the plane defined by the vectors rp and rq, as we 

have already mentioned. We proceed to compute 

 

      0 0 0

( , ) ( , )
1 ,p p q

p q p q
q q q p p

p q
  

 
         

r r
r r r . (9.10) 

 

From this 

 

         0 0

( , ) ( , )
1 1p q p q

p q p q
q q q q

p q
  

 
           

r r
r r r r  (9.11) 

 

which is equal to zero when q is given by (9.8). These results are in agreement with Table 2.1. 

Thus, the only time (9.1) can be zero is when we have an irregular BQ. 

  

 We have given examples of regular and irregular BQs in Section 2. We present additional 

ones here by appropriately modifying the third BQ of Section 3. The relevant vectors are 

 

      3,0,0 , 0,2,0 , 3 ,0,0p q pq   r r r . (9.12) 

 

We have thus modified the last vector to be collinear with rp. We also set p0 = q0 = 0.25. Since 

the vectors in (9.12) lie in the xy-plane, so does the surface of the BQ. In Figure 9.1.1, we display 

the BQ's surface when  = 0.5. Since (9.8) results in a value of q outside its range of values, we 

have a regular BQ in the xy-plane. Moreover, for C in (9.1) we have that 

 

  0

3
1 3 1

2 2
pq p

q
C v q

 
       

 
p r r . (9.13) 
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In Figure 9.1.2, we have set  = 1.0. The resulting value of -1 in (9.8) is at the lower end of the 

range of q and results in the QL being reduced to a triangle: 

 

    1 3 1 0pC q q    r . (9.14) 

 

In Figure 9.1.3, we have set  = 2.0. The resulting value of q in (9.8) is now well within the 

range of values of q and we get a very irregular BQ, namely, two triangles with a common ver-

tex. 

 

  3 3 1 2 9C q     . (9.15) 

 

We can obtain similar results for F in (6.20). 

 

 
 

Figure 9.1.1: Graph of the BQ of (9.12) with  = 0.5. 

 

 
 

Figure 9.1.2: Graph of the BQ of (9.12) with  = 1.0. 
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Figure 9.1.3: Graph of the BQ of (9.12) with  = 2.0. 

 

 In this last case, the position vector for the BQ is 

 

    ˆ ˆ, 1 2 2p q xp q y q  r . (9.16) 

 

From this we see that the line q = - 1/2 ( 1p  ) maps to the single point (0, -1) in the xy-plane. 

 

 From the above discussion, it becomes clear that we have to exercise caution when we deal 

with a flat BQ. From (2.2), the position vector to a point on the BQ is 

 

 00( , ) , 1, 1p q pqp q p q pq p q     r r r r r  (9.17) 

 

with the four vectors defined in (2.3) – (2.5). For this BQ to be flat, we must have the last three 

vectors lying on the same plane. One way to express this condition is that 

 

   0pq p q  r r r . (9.18) 

 

If this holds, the next step is to determine the scalars in (2.9). This can be done by considering 

the rectangular components of this equation and solving a system of two equations in two un-

knowns. Once the unknowns have been determined, we can use Table 2.1 to decide whether we 

are dealing with a regular or irregular BQ. 

 

 We next ask the question of how sensitive the numerical integration becomes as we move 

from a regular BQ to an irregular one. To this end, we introduce the BQ 

 

      3,0,0 , 0,2,0 , 0,2 ,0p q pq   r r r . (9.19) 

 

For this BQ, rq and rpq are collinear. In place of (9.6), we now have 

 

 pq qr r  (9.20) 
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while, in place of (9.8), we have 

 

 
1

p


   . (9.21) 

 

In Figures 9.2.1 to 9.2.3, we display the graph of this BQ when  = 0.9, 0.99 and 0.999. We see 

that, as  tends to one, the BQ tends to look more like a triangle than a QL. 

 

 
 

Figure 9.2.1: Graph of the BQ of (9.19) with  = 0.9 (p' = -1.1111). 

 

 
 

Figure 9.2.2: Graph of the BQ of (9.19) with  = 0.99 (p' = -1.0101). 
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Figure 9.2.3: Graph of the BQ of (9.19) with  = 0.999 (p' = -1.0010). 

 

 We now examine what happens to the integral in (7.9) as  tends to one. We have computed 

this integral for the singular point at the center of the pq-coordinates and also at a corner point. 

We have considered the three values of  as well as four values of h. We display the integration 

results in Tables 9.1.1 to 9.2.3. We see that the two quadratures agree to at least 14 SD and, 

where there is a disagreement in the last digit, it is only by one unit. We also note that the cases 

of h = 10
-20

 and h = 0 are in perfect agreement, which further reinforces the use of a small, non-

zero h in place of zero. 

 

Table 9.1.1: Value of the integral in (7.9) for the BQ of (9.19) and for p0 = q0 

= 0 and  = 0.9. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 2.74665336952689 0.016 14 2.74665336952688 0.031 14 

1.00E-08 2.84965918230493 0.031 15 2.84965918230493 0.032 15 

1.00E-20 2.84965919277691 0.031 14 2.84965919277690 0.015 14 

0.00E+00 2.84965919277691 0.031 14 2.84965919277690 0.000 14 

 

Table 9.1.2: Value of the integral in (7.9) for the BQ of (9.19) and for p0 = q0 = 

0 and  = 0.99. 

 

h 

GKQ DEQ 

Value Time SD Value Time SD 

1.00E-01 2.74730724784908 0.000 15 2.74730724784908 0.016 15 

1.00E-08 2.85037159343782 0.032 14 2.85037159343781 0.031 14 

1.00E-20 2.85037160390979 0.016 15 2.85037160390979 0.015 15 

0.00E+00 2.85037160390979 0.015 15 2.85037160390979 0.015 15 
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Table 9.1.3: The value of the integral in (7.9) for the BQ of (9.19) and for p0 = q0 

= 0 and  = 0.999. 

 

h 

GKQ DEQ 

Value Time SD Value Time SD 

1.00E-01 2.74736479069567 0.000 14 2.74736479069566 0.016 14 

1.00E-08 2.85043525566924 0.031 15 2.85043525566924 0.031 15 

1.00E-20 2.85043526614122 0.032 15 2.85043526614122 0.015 15 

0.00E+00 2.85043526614122 0.016 15 2.85043526614122 0.016 15 

 

Table 9.2.1: The value of the integral in (7.9) for the BQ of (9.19) and for p0 = 

-1, q0 = 1, and  =0.9. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 2.56501461685842 0.015 15 2.56501461685842 0.032 15 

1.00E-08 2.84064664644604 0.031 15 2.84064664644604 0.016 15 

1.00E-20 2.84064668163297 0.016 15 2.84064668163297 0.015 15 

0.00E+00 2.84064668163297 0.000 15 2.84064668163297 0.000 15 

 

Table 9.2.2: The value of the integral in (7.9) for the BQ of (9.19) and for p0 = -

1, q0 = 1, and  =0.99. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 2.99932746262052 0.016 14 2.99932746262051 0.015 14 

1.00E-08 4.26080553788516 0.015 15 4.26080553788516 0.016 15 

1.00E-20 4.26080589691273 0.000 15 4.26080589691273 0.016 15 

0.00E+00 4.26080589691273 0.016 15 4.26080589691273 0.015 15 

 

Table 9.2.3: The value of the integral in (7.9) for the BQ of (9.19) and for p0 = 

-1, q0 = 1, and  =0.999. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 3.02996129711238 0.000 15 3.02996129711238 0.000 15 

1.00E-08 5.69681413172724 0.000 14 5.69681413172723 0.016 14 

1.00E-20 5.69681772889930 0.016 14 5.69681772889929 0.015 14 

0.00E+00 5.69681772889930 0.015 14 5.69681772889929 0.016 14 
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 We may also ask the question of whether (7.9) is computable when 1  . Here, we may 

run into problems if either p0 or q0 turns out to be zero. For example, when  = 1 and p0 = -1, q0 

= 1, then q0 = (0, 2(1+p0), 0) = (0, 0, 0). If we define the unit normal in terms of these two vec-

tors, then in this example, we will run into the case of dividing by zero. In such a case, and since 

the unit normally does not change on a flat BQ we can do either of two things: select two non-

collinear vectors on the BQ to define the unit normal or, even better, ignore it altogether since it 

only appears in B in (7.4) and, there, it is dotted to the vector rpq which lies on the BQ's plane; 

thus, this product is zero and can be omitted. 

  

 In Tables 9.3 and 9.4, we present results for the BQ of (9.20) and for three different values 

of . In Tables 9.3, we take the singular point to be the origin. We see that the results from the 

two quadratures agree to at least 14SD. We also note that the results of Tables 9.3.1 and 9.3.3 are 

identical. This is because the BQ (a triangle in this case) is the reflection of the BQ in the second 

case about the y-axis, as shown in Figs. 9.3.1 and 9.3.2. If we compare the values in Table 9.1.3 

to those in Table 9.3.1, we see a smooth transition between the values for  = 0.999 and those for 

 = 1. We show the BQ for Table 9.3.2 in Figure 9.3.3. It comprises two triangles with a com-

mon vertex. 

 

Table 9.3.1: The value of the integral in (7.9) for the BQ of (9.19) and for p0 = q0 = 0  

and  = 1. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 2.74737108607702 0.031 15 2.74737108607702 0.031 15 

1.00E-08 2.85044223392429 0.046 14 2.85044223392428 0.047 14 

1.00E-20 2.85044224439626 0.000 15 2.85044224439626 0.016 15 

0.00E+00 2.85044224439626 0.031 15 2.85044224439626 0.000 15 

 

Table 9.3.2: The value of the integral in (7.9) for the BQ of (9.19) and for p0 = q0 = 0  

and  = 2. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 2.73594640126082 0.016 15 2.73594640126082 0.016 15 

1.00E-08 2.83994915267823 0.016 15 2.83994915267823 0.031 15 

1.00E-20 2.83994916315021 0.000 15 2.83994916315021 0.015 15 

0.00E+00 2.83994916315021 0.016 15 2.83994916315021 0.031 15 
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Table 9.3.3: The value of the integral in (7.9) for the BQ of (9.19) and for p0 = q0 = 0  

and  = -1. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 2.74737108607702 0.016 15 2.74737108607702 0.015 15 

1.00E-08 2.85044223392429 0.031 14 2.85044223392428 0.031 14 

1.00E-20 2.85044224439626 0.031 15 2.85044224439626 0.000 15 

0.00E+00 2.85044224439626 0.000 15 2.85044224439626 0.016 15 

 

 
 

Figure 9.3.1: Graph of the BQ of (9.19) with  = 1 (p' = -1.0). 
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Figure 9.3.2: Graph of the BQ of (9.19) with  = -1 (p' = 1.0). 

 

 
 

Figure 9.3.3: Graph of the BQ of (9.19) with  = 2 (p' = -0.5). 
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 In Tables 9.4, we take the singular point to be the point (p0 = -1, q0 = 1). In Table 9.4.1, we 

present the results for  = 1. In this case, the singular point is the point (-3, 0, 0) in Figure 9.3.1. 

Also, we have that q0 = (0, 0, 0), as we mentioned above. In this case, we have from (7.4) that 

 

  
22 , 0 , 9 4 1A h B C v     . (9.23) 

 

When we substitute these values into the logarithm's argument in (7.9), we get 

 

 
 

   0

0

2 21

1

2 21
ln

q

q

C v h C v
I dv

C v h



 

   
   (9.24) 

 

an expression that is not computable when h = 0. If we compare this table to Table 9.2.3, we see 

that the transition for h = 0.1 is smooth. As h gets smaller, however, we see a radical change in 

the integration outcome. We note that in Table 9.2.3, the value of q0 is (0, 0.002, 0), a small val-

ue but sufficient to stabilize the integral. 

 

Table 9.4.1. The value of the integral in (7.9) for the BQ of (9.19) and for p0 = -1, q0 = 1 

and  = 1. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 3.03215129971745 0.015 14 3.03215129971744 0.016 14 

1.00E-08 13.1082615780428 0.000 15 13.1082615780428 0.015 15 

1.00E-20 30.3816595133087 0.031 15 30.3816595133087 0.016 15 

0.00E+00 Failed to compute N/A N/A Failed to compute N/A N/A 

 

Table 9.4.2. The value of the integral in (7.9) for the BQ of (9.19) and for p0 = -1, q0 = 1 

and  = 2. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 1.27899151358520 0.000 14 1.27899151358519 0.000 14 

1.00E-08 1.29041253658337 0.016 14 1.29041253658336 0.031 14 

1.00E-20 1.29041253765587 0.000 15 1.29041253765587 0.015 15 

0.00E+00 1.29041253765587 0.015 15 1.29041253765587 0.031 15 
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Table 9.4.3. The value of the integral in (7.9) for the BQ of (9.19) and for p0 = -1, q0 = 1 

and  = -1. 

 

h 

GKQ  DEQ 

Value Time SD Value Time SD 

1.00E-01 0.936274735416838 0.015 14 0.936274735416837 0.016 14 

1.00E-08 0.944587582282624 0.015 14 0.944587582282623 0.016 14 

1.00E-20 0.944587583101619 0.016 14 0.944587583101618 0.000 14 

0.00E+00 0.944587583101619 0.000 14 0.944587583101618 0.016 14 

 

 In concluding this section, we stress that we should avoid irregular BQs in practice. For flat 

but regular BQs, we can use (7.9) without incurring a loss of SD. 
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SECTION 10: SUMMARY AND CONCLUSIONS 

 

 We have presented a new approach for computing the simple layer potential of polynomial 

density over a BQ. The analysis focuses on the case when the OP is near or on the BQ. Our ap-

proach differs from existing ones in that it does not use a transformation of coordinates nor does 

it employ an auxiliary plane; instead it uses rectangular coordinates and integrates analytically 

along one of them and numerically along the other. We have demonstrated that, with carefully 

designed quadratures, this approach can yield DP for any regular BQ and any position of the OP. 

  

 In Section 2, we define the BQ mathematically and provide its geometric properties. We al-

so make the distinction between a regular and an irregular BQ; moreover, we show that an irreg-

ular BQ is necessarily flat and we provide examples. In Section 3, we describe three BQs that we 

use for testing our approach. They range from a flat one to a very elongated three-dimensional 

one. 

  

 In Section 4, we discuss in detail the reasons for the need of a new approach to the calcula-

tion of the simple layer potential. We demonstrate through analysis and examples that, under the 

existing approach of the tangent-plane approximation, the limit of the integrand does not exist at 

the singularity point, and that the integrand may undergo rapid changes in the neighborhood of 

this point. We also demonstrate that the use of polar coordinates works well when the OP is on 

the BQ but not when it is near the BQ. 

  

 In Section 5, we introduce our approach. We split the integrand into two parts: one that has 

no singularities of any kind, and one that does not oscillate but contains the singularity. The inte-

gral of the formal can be evaluated numerically to good precision. For the latter we show that, 

through repeated integration by parts, we can reduce its integral to a number of single integrals 

with at least continuous integrands and one that is basically a simple layer (or Newtonian poten-

tial) of density one. 

  

 In Section 6, we consider the simple layer of density one and integrate it with respect to one 

of the two parameters that define the BQ. Through analysis and examples, we show that the re-

maining integral (with respect to the remaining parameter and which can be evaluated only nu-

merically) loses precision as the OP approaches the BQ. In Section7, we study the cause of this 

behavior and find that it is due to two terms in the integrand that subtract one another. When the 

integration variable is equal to zero, and as the OP approaches the BQ, the two terms become 

almost equal and their difference appears as zero while it is not, unless the OP is on the BQ. We 

correct for this by rewriting the expression for the integrand in such a way that the difference of 

the offending terms is multiplied by a term that becomes zero when the integration variable is ze-

ro. Using examples, we show that the new expression is stable and that we can obtain 15 SD of 

precision even when the OP lies on the BQ. In Section 8, we continue testing our method using 

the third BQ of Section 3. For all three test points we get a minimum of 14 SD. We also use inte-

gration by parts to produce a new formula that is guaranteed to be stable when the OP is on the 

BQ. As we point out there, all numerical experiments with the general formula yield a minimum 

of 14 SD; moreover, even though the OP lies on the BQ, we can move it a small distance off it 

without loss of precision. Thus, we may not need to use this special formula, a formula that is 

more computationally intensive than the general one. 
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 In Section 9, we prove a claim we made in earlier sections and show that a certain term can 

be zero only if the BQ is irregular. We also give additional examples of irregular BQs and per-

form a sensitivity study to determine how precision is affected as we pass from a regular to an ir-

regular BQ. As we point out there, irregular BQs should be avoided in practice. 

  

 In terms of additional investigations, we may wish to perform a more detailed validation of 

our formulas. We believe, however, that they will withstand any test, no matter how severe. We 

may also perform calculations for several OPs lying on the same BQ to determine the resulting 

surface and its smoothness. This is necessary for determining whether the second integration, the 

one with respect to the OP coordinates can be performed numerically to high precision. Alterna-

tively, we may wish to use these points to interpolate and use the resulting expressions for an an-

alytic integration with respect to the OP coordinates. 
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APPENDIX A: Irregular Bilinear Quadrilateral 

 

 In this appendix, we prove the oral arguments that follow (2.8). We resolve the vector rpq 

with a component in the plane formed by the vectors rp and rq and a component perpendicular to 

that plane 

 

  pq p q p q     r r r r r . (A.1) 

 

In place of (2.8), we can then write 

 

    
( , ) ( , )

p q p q p q q p

p q p q
q p

p q
  

 
         
  

r r
r r r r r r r r  

      1 p q p q q pq p q p         r r r r r r  

       
2 2

1 p q p p q q q p q pq p p q q p  
                     

r r r r r r r r r r . (A.2) 

 

This is a vector for a component in the plane of the vectors rp and rq, and one perpendicular to 

this plane. For this vector to be equal to zero, all three components must be zero 

 

  

 

2

2

1 0

0

0

p q q

p p q

q p

p q

p q

 






  

       
        

r r r

r r r

. (A.3) 

 

If we assume that y is different from zero, then the last two equations yield a determinant differ-

ent from zero since we have assumed that rp and rq are not co-linear. Thus, the system of two 

equations has only the trivial solution, i.e., p and q are both equal to zero. For these values, how-

ever, the first equation in (A.3) is not satisfied. This leads us to the conclusion that, for the two 

equations to be equal to zero, y must be equal to zero. From (A.1), we conclude that, for a BQ to 

be irregular, the three vectors describing it must lie on the same plane. If we assume that all three 

are non-zero vectors, we conclude that a necessary condition for an irregular triangle is that 

 

   0pq p q  r r r . (A.4) 

 

 In case rp and rq are colinear, the first term on the right of (2.8) is zero and the second be-

comes zero at the origin; thus, we have an irregular BQ that lies on the plane defined by rp (or rq) 

and rpq. 
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APPENDIX B: Continuation of Analysis of Section 4 

 

 In Section 4, we analyzed the inner integral of the first BQ of Section 3. We found that the 

first integrand in (4.2) is not as smooth as stated in [4]. Here, we perform the same analysis for 

the remaining two BQs of Section 3. 

 

 The second BQ is shown in Figure 3.2. The position vector is given by (3.6) so that 

 

      
1 1 1

3,0,0 0,2,0 0,0,1
4 4 16

  r  (B.1) 

 

and, hence, 

 

      
1 1 1

( , ) 3,0,0 0,2,0 0,0,1
4 4 16

u v u v u v
   

         
   

r r . (B.2) 

 

The linear part of this is 

 

        0

1
( , ) 3,0,0 0,2,0 0,0,1

4
u v u v u v    r r . (B.3) 

 

From the last two we get that 

 

      
2

2 2

2

1 1 1
, 3 2

4 4 16
R u v u v u v

   
        

   
 (B.4) 

 

and 

 

      
2

2 2

0,2 , 3 2
4

u v
R u v u v

 
    

 
 (B.5) 

 

so that 

 

  

       

2
2 2

2 22 2

1 1 1

4 4 4
,

1 1 1
3 23 2

44 4 16

l m l m

u v

h u v

u v
u vu v u v



     
      

     
 

                     

. (B.6) 

 

 We have plotted this expression in Mathematica [11]. Figure B.1 shows the graph of (B.6), a 

graph that is anything but smooth near the origin. In Figs. B.2 and B.3, we zoom toward the 

origin and take cuts along both axes. We see that, on at least one side of an axis, we have a fast-

changing graph that is difficult to match numerically. 
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Figure B.1: Graph of the surface (B.6) for 0, 0l m  ; Second BQ. 

 

 

 
 

Figure B.2. Cuts of Fig. B.1 along 0.05v   (blue), 0v   (invisible but coinciding with the u-

axis) and 0.05v  (olive). Second BQ. 



NAWCADPAX/TR-2015/214 

 

 83 APPENDIX B 

 
 

Figure B.3. Cuts of Fig. B.1 along 0.05u   (blue), 0u   (invisible but coinciding with the v-

axis) and 0.05u   (olive). Second BQ. 

 

In Figs. B.4 and B.5, we display the behavior of (B.6) for 1, 0l m   while, in Figs. B.6 and 

B.7, we display the graph of the same function for 0, 1l m  . In Figs. B.8 – B.11, we display 

the behavior for 1, 1l m  . What we observe is very similar to what we discussed in Section 4 

for the first BQ of Section 3. We will not repeat those comments here. 

 

 
Figure B.4: Graph of (B.6) for 1, 0l m  ; Second BQ. 
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Figure B.5: Graph of the function  2 ,0h u , as defined in (B.6), for 1, 0l m  ; Second BQ. 

 
 

Figure B.6: Graph of (B.6) for 0, 1l m  ; Second BQ. 
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Figure B.7: Graph of the function  2 0,h v , as defined in (B.6), for 0, 1l m  ; Second BQ. 

 

 

 
 

Figure B.8: Graph of (B.6) for 1, 1l m  ; Second BQ. 
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Figure B.9: Graph of the function  2 ,0h u , as defined in (B.6), for 1, 1l m  ; Second BQ. 

 

 
 

Figure B.10: Graph of the function  2 0,h v , as defined in (B.6), for 1, 1l m  ; Second BQ. 

 

 
 

Figure B.11: Graph of the function  2 ,h u u , as defined in (B.6), for 1, 1l m  ; Second BQ. 
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We proceed next to the last BQ of Section 3. Its position vector is given by (3.9). From it 

 

      
1 1 1

3,0,0 0,2,0 0,0,10
4 4 16

  r  (B.7) 

 

and, hence, 

 

      
1 1 1

( , ) 3,0,0 0,2,0 0,0,10
4 4 16

p q u v u v
   

         
   

r r . (B.8) 

 

The linear part of this is 

 

        0

1
( , ) 3,0,0 0,2,0 0,0,10

4
u v u v u v    r r . (B.9) 

 

From the last two we get that 

 

      
2

2 2

3

1 1 1
, ( , ) 3 2 100

4 4 16
R u v p q u v u v

   
           

   
r r  (B.10) 

 

and 
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so that 
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(B.12) 

 

 We use Mathematica [11] to produce graphs. In Figure B.12 we show the graph of (B.6), a 

graph that is anything but smooth near the origin. In Figs. B.13 and B.14, we zoom toward the 

origin and take cuts along both axes. We see that, on either side of an axis, we have a doublet-

like behavior that is difficult to match numerically. 
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Figure B.12: Graph of the surface (B.12) for 0, 0l m  ; Third BQ. 

 

 

 
 

Figure B.13. Cuts of Fig. B.12 along 0.05v   (blue), 0v   (invisible but coinciding with the u-

axis) and 0.05v  (olive). Third BQ. 
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Figure B.14. Cuts of Fig. B.12 along 0.05u   (blue), 0u   (invisible but coinciding with the v-

axis) and 0.05u   olive. Third BQ. 

 

 In Figs. B.15 and B.16, we display the behavior of (B.12) for 1, 0l m   while, in Figs. 

B.17 and B.18, we display the graph of the same function for 0, 1l m  . In Figs. B.19 – B.22, 

we display the behavior for 1, 1l m  . What we observe is very similar to what we discussed in 

Section 4 for the first BQ of Section 3, except for the last graph, where we display the behavior 

along the diagonal. We verify below that the graph displays the correct behavior. From (B.12) 
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 (B.13) 

 

which explains the non-linearity of the graph in Figure B.22. Taking the limit, we have 
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. (B.14) 

 

This number is in agreement with the one we get from Figure B.22. 

 

 The bottom line here is that the integrand of the first integral in (4.2) is not sufficiently 

smooth and that a numerical evaluation of it would require very many grid points. 
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Figure B.15: Graph of (B.12) for 1, 0l m  ; Third BQ. 

 

 

 
 

Figure B.16: Graph of the function  3 ,0h u , as defined in (B.12), for 1, 0l m  ; Third BQ. 
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Figure B.17: Graph of (B.12) for 0, 1l m  ; Third BQ. 

 

 

 
 

Figure B.18: Graph of the function  3 0,h v , as defined in (B.12), for 0, 1l m  ; Third BQ. 
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Figure B.19: Graph of (B.12) for 1, 1l m  ; Third BQ. 

 

 
 

Figure B.20: Graph of the function  3 ,0h u , as defined in (B.12), for 1, 1l m  ; Third BQ. 
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Figure B.21: Graph of the function  3 0,h v , as defined in (B.12), for 1, 1l m  ; Third BQ. 

 

 

 
 

Figure B.22: Graph of the function  3 ,h u u , as defined in (B.12), for 1, 1l m  ; Third BQ. 
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